Preview
Vol 10, No 4 (2019)
View or download the full issue PDF (Russian)
https://doi.org/10.21122/2220-9506-2019-10-4

Measuring instruments

301-307 1032
Abstract

We report, for the first time to our knowledge, a diode-pumped continuous-wave microchip Er,Yb:YMgB5O10 laser. The purpose of this work was to study the growth technique, spectroscopic properties and continuous-wave laser performance of Er3+,Yb3+:YMgB5O10 novel crystal.

 Absorption and luminescence spectra as well as kinetics of luminescence decay were studied. Ytterbium-erbium energy transfer efficiency was determined. The output characteristics (output power, slope efficiency, laser wavelength) of Er3+,Yb3+:YMgB5O10 laser were determined.

Two intensive absorption bands with peaks centered at 937 nm and 976 nm were observed in the absorption spectra at the wavelength near 1 μm. The maximum value of absorption cross-section was determined to be 1.5·10–20 cm2 at 976 nm for polarization E//Ng . A number of narrow lines were observed in the absorption spectra in the 1425–1575 nm spectral range (transition 4I15/2 4I13/2 of erbium ions). The lifetime of the upper laser level 4I13/2 of Er3+ ions was determined to be 390 ± 20 μs. The ytterbium-erbium energy transfer efficiency for YMgB5O10 crystal with 2 at.% of Er3+ and 11 at.% for Yb3+ was close to 84 %. The maximal continuous-wave output power of 0.2 W with slope efficiency of 8 % regarding to absorbed pump power was realized at the wavelength of 1570 nm. With the improvement of cavity parameters the output laser performance of the Er,Yb:YMgB5O10 crystal can be further enhanced.

Taking into account high thermal conductivity of ≈ 6.2 W·m–1·K–1, the Er,Yb:YMgB5O10 crystal can be considered as a good gain medium for 1.5 μm lasers for applications in laser rangefinder and LIDAR systems.

308-321 1961
Abstract

Currently, the study of rolling friction is one of the main directions in the study of the laws of contact interaction of solids. The complexity of solving the problems existing in this area is evidenced by the practically vast number of publications, the list of which is constantly growing.

In this paper, attention is paid to studies of the moments of rolling resistance at displacements from the equilibrium position of a ball-shaped body that are substantially smaller than the size of the contact spot. The purpose of the present work is to describe the design of the single-contact pendulum device developed by the authors, in which the physical pendulum, resting on the flat surface of the body under study with only one ball, makes free small stable swings in a vertical plane, as well as in the description of a special measurement technique with high sensitivity and accuracy rolling resistance forces, including adhesion forces and frequency-independent forces of elastic deformations. It is assumed that the adhesion forces can exhibit both dissipative properties and elastic properties, while elastic forces are independent of the strain rate.

The originality of the method of measuring rolling resistance in this paper consists in using the method of nonlinear approximation of the dependence of the amplitude and period of swing of the pendulum on time. The approximation is carried out on the basis of the proposed laws of amplitude decay and period variation, which differ from the usual exponential law.

It is assumed that this approach allows one to evaluate the surface tension of a solid and evaluate the pressure of adhesion forces between the surfaces of the contacting bodies, as well as to establish an analytical form of the moment of rolling resistance. The curves of the dependence of the rolling resistance moment on the swing amplitude of the pendulum are constructed. Experiments were performed for the following pairs of contacting bodies: steel-steel, steel-glass, steel-electritechnical silicon. It was assumed that the pressure at the contact spot did not exceed the elastic limit.

The developed single-ball pendulum device and the proposed measurement procedure open up new wide possibilities for studying the laws of mechanisms of rolling resistance under conditions of microand mesoscale displacements of a rolling body from a state of rest.

322-330 796
Abstract

Transistor structures are the basic elements of integrated circuitry and are often used to create not only transistors themselves, but also diodes, resistors, and capacitors. Determining the mechanism of the occurrence of inductive type impedance in semiconductor structures is an urgent task, the solution of which will create the prerequisites for the development of solid-state analogs of inductors. The purpose of the work is to establish the effect of extraction of non-equilibrium charge carriers from the base region on the reactive impedance of a bipolar p–n–p transistor.

Using impedance spectroscopy in the frequency range 20 Hz–30 MHz, the structures based on p–n–p transistors KT814G manufactured by JSC “INTEGRAL” were studied. It is shown that in the transistor structures it is possible to observe the “effect of negative capacitance” (inductive type impedance). It is established that the most probable cause of the inductive type impedance is the accumulation of uncompensated charge of holes in the base, the value of inductive impedance is influenced by both the injection efficiency in the base–emitter junction and the extraction efficiency in the base–collector junction.

The results can be applied in the elaboration of technologies for the formation of elements of silicon based integrated circuits with an impedance of inductive type.

331-340 939
Abstract

Currently, ultra-small satellite aresubjectstostringentrequirementsintermsoftheaccuracyof determining the position of the satellite in orbit, while the satellite is the subject to restrictions on mass, size and power consumption. The aim of this work is to simulate of navigation receiver operation for the ultra-small satellite with restrictions on energy consumption and computational resources.

The operating conditions are considered and the requirements to the onboard navigation receiver for the ultra-small satellite are determined. The navigation receiver operation at the initial stage, performance testing, error detection, analysis of the reliability of the solution of the navigation-time determination problem are described.

The structure of the design ballistics problems for orbit prediction of ultra-small spacecraft and navigation satellites, radio visibility intervals for GLONASS and GPS systems, parameters of navigation signals have been developed.

The motion relative to the satellite systems GPS and GLONASS for a preliminary orbit of СubeBel-1 have been simulated. The Doppler dynamics of the GPS satellite signals in the receiver without restrictions on the relative speed for one day has been calculated. Radio visibility intervals for GPS and GLONASS satellites were calculated and optimal conditions for the cold start of the navigation receiver with a relative speed limit (Vr < 500 m/s) for 1 hour of operation both in separate and in joint operation on both systems were determined.

To test the verification methods of the experimental data of the СubeBel-1 satellite, the operation of the navigation receiver of the Nsight satellite was studied according to the received telemetry from the beginning of its flight until the moment it entered stable operation.It is shown that the telemetry data of the navigation receiver at the testing stage had a significant error. After software correction, the navigation receiver worked steadily throughout the week of observation, the error of longitude and latitude measurements did not exceed 0.2 degrees.

341-352 930
Abstract

The relevance of early detection of fire signs is quite obvious because due to the necessary measures for evacuating of people and material values, disconnecting the electrical equipment and extinguishing the fire at the time of the onset of fire or passive smoldering, human casualties can be completely avoided and economic losses can be minimized.

A graphical representation of fire detectors' the classification in the form of a generalized scheme using all the main classification features, their advantages and disadvantages is given. The optimal areas for the use of detectors depending on the fire load are determined. The effectiveness of combined fire detectors' use, equipped in addition to traditional smoke and heat sensors with gas sensors, as an integrated approach to the organization of control over protected objects is shown.

The results of development of highly sensitive two-zone sensor with sensitive elements based on iron oxide films for detecting the release of explosive and poisonous gases in the initial stage of decay before the formation of ignition conditions are presented. The use of gas sensors that respond to hazardous gases in the environment significantly reduces the risk of death due to carbon monoxide poisoning.

Methods of measurements, monitoring, diagnostics

353-359 1874
Abstract

The first part of paper deals with the base information about diagnostics of power transformers. In this part are presented differently insulating methods, for example method of recovery voltage method, method of polarization and depolarization currents and chromatographic analysis.

The second part of paper deals use of method of frequency domain spectroscopy for oil power transformers. This method is used in analysis insulating condition of power transformer with system of oil-paper. It was found, that the results of these tests are highly impacted by the operating temperature during the experimental measurement. Moisture and conductivity between insulating paper and oil in an insulating system are highly dependent from temperature.

In the other part, the paper presents experimental results of the frequency diagnostic measurement for a real single-phase traction transformer 110/27 kV at different operating temperatures and states (with oil and without).

Finally in the last part, the paper presents comparing frequency insulating measurements among several the same single-phase transformers 110/27 kV.

360-372 819
Abstract

Improving the reliability and testing performance of permanent joints оf different materials made by welding, spraying, gluing, soldering and other methods is an important production task, for which the ultrasonic method is the simplest and most effective. The purpose of this work was to expand the technical possibilities and increase the sensitivity of ultrasonic testing of adhesion defects of materials joints based on the establishment of laws governing the formation of a scattering field of elastic waves from an inhomogeneous boundary in three-dimensional space and issuing recommendations for the development of suggested method.

For the first time, in the framework of classical concepts, the scattering fields of elastic waves of an acoustic beam with a circular cross section moving across the boundary of a semi-infinite defect are calculated. It is proposed to use a phase shift between the waves reflected from the indicated surfaces, which varies in the range of π/4–π, as an important parameter of the material joint's defect. It has a significant effect on the field pattern and its angular amplitude extrema — minima and maxima of different orders when the defect boundary is moved relative to the center of the acoustic beam spot.

The features of the evolution of the structure of the scattering field are established, which make it possible to identify optimal conditions for the detection of weakly reflective defects in sound. It is shown that it is possible in principle to estimate the defect's area by measuring a change in the amplitude of the primary maximum of the radiation pattern of the scattered waves.

Specific examples show the effectiveness of using the proposed method for a number of practical applications.

373-381 1235
Abstract

The object of the study is software methods of the Earth surface images processing obtained from the VRSS-2 satellite to determine the spectral composition of the vegetation cover to detect the presence of carotenoids during prolonged exposure to hydrocarbons.

The photosynthetic pigments of higher plants (chlorophylls, carotenoids and phytobiliproteins) were analyzed. In the chloroplasts of higher plants, chlorophyll and carotenoids are present in a ratio of about 3:1. The presence of hydrocarbons increases the amount of carotenoids. Carotenoids have absorption bands in the blue-violet region from 400 to 500 nm and a high reflection coefficient in the red-orange and yellow spectral regions, which corresponds to the multispectral MSS operating mode (B2) of the VRSS-2 satellite camera. An analysis of the vegetation growing in the study area of the Puerto Kumarebo settlement showed that the best indicator of the presence of hydrocarbons in the soil is Prosopis juliflora – CUJI with a deep root system of up to 50 m, growing in the study area.

Using ENVI software, a comparative evaluation of the efficiency of photographs image processing was carried out using the normalized relative vegetation index (NDVI) and the structure-insensitive pigment index (SIPI) to detect changes in the color of green vegetation. It has been established that the SIPI index is more applicable for hydrocarbon search tasks. Moreover, the recorded index fluctuations in the area of uniform vegetation at the level of 2.5 % are characteristic of normal growing conditions and cannot serve as evidence of the presence of factors indicating the presence of hydrocarbons in the soil. For a more detailed assessment of the presence of carotenoids in the foliage and the presence of hydrocarbons in the soil, photographs with high optical resolution of objects on the surface are required.

382-390 770
Abstract

The existing methods for monitoring the performance of multi-criteria fire detectors do not provide for verification of their characteristics in the conditions of transition from smoldering to flame burning. The aim of the work is the development of the research methods of the environmental parameters during the transition from smoldering (pyrolysis) to flame combustion for simulation a test fire while checking the quality of multi-criteria fire detectors.

A technique to conduct research of environmental parameters under conditions of heating wood samples of different sizes to a temperature of selfignition and burning crumpled and smooth paper has been developed.

Changes in the concentration of carbon monoxide, specific optical density, and scattering ability during the transition from smoldering (pyrolysis) to flame burning of prepared wood and crumpled paper were studied for the first time.

It is shown that the controlled environmental parameters during the transition from smoldering pyrolysis to flame burning change together. Conclusion: the speed of growth of the scattering ability of smoke decreases by 2.4 times, the speed of increase in the specific optical density and concentration of carbon monoxide increases by 2 and 5.3 times (respec-tively), during the transition from pyrolysis to flame burning of wood.

391-401 1854
Abstract

The aim of the paper was to develop a model of thermal extinguishing mechanism using dry chemical powder taking into account the inertia of heat transfer to powder particles during unsteady heat exchange to identify the optimal conditions for extinguishing of A1 class fires with powders.

The method of experimental and mathematical modelling of fire extinguishing process using dry chemical powder with short-term effect on the fire was used to achieve the goal. The experimental dependences of the extinguishing time and unit consumption of the extinguishing powder on the intensity of the powder supply to the combustion zone in extinguishing of subclass A1 fire in same area and in a limited volume were obtained. The mathematical model of a thermal extinguishing mechanism using dry chemical powder has been developed, taking into account the inertia of heat transfer to powder particles during unsteady heat exchange.

Analysis of the regularities of extinguishing the subclass A1 fire using powder with a short feeding it into the fire indicates the presence of optimum values of unity consumption of powder on the fire from the intensity of feeding it into the fire. The presence of this optimum is due to the inertia of extinguishing the subclass A1 fire using powder due to the finiteness of the heat transfer time to the particles of the extinguishing powder and the limited time of interaction of particles with the combustible material.

The theoretical analysis of the fire extinguishing process over the area taking into account the inertia of heat transfer to the powder particles at non-stationary heat exchange are carried out. The results of the analysis are in qualitative agreement with the results of the experimental study of the regularities of extinguishing of model fire foci of subclass A1 with General-purpose fire extinguishing powder.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)