Preview

Devices and Methods of Measurements

Advanced search

CALCULATION OF STATIC PARAMETERS OF SILICON DIODE CONTAINING δ-LAYER OF TRIPLE-CHARGED POINT DEFECTS IN SYMMETRIC p–n-JUNCTION

https://doi.org/10.21122/2220-9506-2018-9-2-130-141

Abstract

The study of semiconductor materials and devices containing a narrow layer of impurity atoms and/or intrinsic point defects of the crystal lattice is of fundamental and practical interest. The aim of the study is to calculate the electric parameters of a symmetric silicon diode, in the flat p–n-junction of which a δ-layer of point triple-charged t-defects is formed. Such a diode is called p–t–n-diode, similarly to p–i–n-diode.

Each t-defect can be in one of the three charge states (−1, 0, and +1; in the units of the elementary charge). It is assumed that at room temperature all hydrogen-like acceptors in p-region and hydrogen-like donors in n-region are ionized. It was assumed that the cross-section for v-band hole capture on t-defects is greater than the cross-section for c-band electron capture on t-defects.

The system of stationary nonlinear differential equations, which describe in the drift-diffusion approximation a migration of electrons and holes in semiconductors, is solved numerically. The static capacityvoltage and current-voltage characteristics of the silicon diode with nondegenerate regions of pand n-type of electrical conductivity are calculated for forward and reverse electric bias voltage.

It is shown by calculation that in the p–t–n-diode containing the δ-layer of t-defects, at the forward bias a region of current density stabilization occurs. At the reverse bias the current density in such a diode is much greater than the one in a p–n-diode without t-defects. With the reverse bias the capacitance of the p–t–n-diode, in contrast to the p–n-diode, increases at first and then decreases.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus

Address for correspondence: Poklonski N.A. – Belarusian State University, Nezavisimosti Ave., 4, Minsk 220030, Belarus.  e-mail: poklonski@bsu.by; poklonski@tut.by



A. I. Kovalev
Belarusian State University
Belarus


N. I. Gorbachuk
Belarusian State University
Belarus


S. V. Shpakovski
Belarusian State University
Belarus


References

1. Shik A.Ya. Semiconductor structures with deltalayers. Sov. Phys. Semicond., 1992, vol. 26, no. 7, pp. 649–660.

2. El-Hajj H., Denisenko A., Bergmaier A., Dollinger G., Kubovic M., Kohn E. Characteristics of boron δ-doped diamond for electronic applications. Diamond Relat. Mater., 2008, vol. 17, no. 4–5, pp. 409–414. doi: 10.1016/j.diamond.2007.12.030

3. Poklonski N.A., Gorbachuk N.I., Shpakovski S.V., Filipenia V.A., Lastovskii S.B., Skuratov V.A., Wieck A., Markevich V.P. Impedance and barrier capacitance of silicon diodes implanted with high-energy Xe ions. Microelectron. Reliab., 2010, vol. 50, no. 6, pp. 813–820. doi: 10.1016/j.microrel.2010.02.007

4. Li J., Chong M., Zhu J., Li Y., Xu J., Wang P., Shang Z., Yang Z., Zhu R., Cao X. 35% efficient non-concentrating novel silicon solar cell. Appl. Phys. Lett., 1992, vol. 60, no. 18, pp. 2240–2242. doi: 10.1063/1.107042

5. Summonte C., Biavati M., Gabilli E., Galloni R., Guerri S., Rizzoli R., Zignani F. Spectral behavior of solar cells based on the “junction near local defect layer” design. Appl. Phys. Lett., 1993, vol. 63, no. 6, pp. 785–787. doi: 10.1063/1.109907

6. Komarov F.F., Komarov A.F., Mironov A.M., Zayats G.M., Makarevich Yu.V., Miskevich S.A. [Simulation of the submicron electronics processing technologies for the computer-aided design of integrated circuits]. Vestnik BGU. Ser. 1 [BSU Bull. Ser. 1], 2011, no. 3, pp. 26–32 (in Russian).

7. Zamalin E.Yu., Bondar’ O.B. [Some problems of modeling of technological processes for the manufacturing of microelectronics devices]. Mikroelektronika [Russ. Microelectron.], 1995, vol. 24, no. 4, pp. 309–314 (in Russian).

8. Poklonski N.A., Kovalev A.I., Vyrko S.A., Vlassov A.T. Semiconductor diode with hopping migration of electrons via point defects of crystalline matrix. Doklady Natsional’noi akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2017, vol. 61, no. 3, pp. 30–37 (in Russian).

9. SiemieniecR.,SchulzeH.-J.,Niedernostheide F.-J., Südkamp W., Lutz J. Compensation and doping effects in heavily helium-radiated silicon for power device applications. Microelectron. J., 2006, vol. 37, no. 3, pp. 204–212. doi: 10.1016/j.mejo.2005.09.011

10. Chelyadinskii A.R., Odzaev V.B. [Watkins effect in semiconductors. Phenomenon and applications in microelectronics]. Vestnik BGU. Ser. 1 [BSU Bull. Ser. 1], 2011, no. 3, pp. 10–17 (in Russian).

11. Poklonski N.A. [Ionization equilibrium and hopping conductivity in doped semiconductors]. Minsk, BGU Publ., 2004, 195 p. (in Russian).

12. Poklonski N.A., Vyrko S.A., Podenok S.L. Statistical physics of semiconductors. Moscow, KomKniga Publ., 2005, 264 p. (in Russian).

13. Bonch-Bruevich V.L., Kalashnikov S.G. Semiconductor physics. Moscow, Nauka Publ., 1990, 688 p. (in Russian).

14. Poklonski N.A., Vyrko S.A., Kovalev A.I., Dzeraviaha A.N. Drift-diffusion model of hole migration in diamond crystals via states of valence and acceptor bands. J. Phys. Commun., 2018, vol. 2, no. 1, pp. 015013 (14 p.). doi: 10.1088/2399-6528/aa8e26

15. Mnatsakanov T.T., Levinshtein M.E., Pomortseva L.I., Yurkov S.N. Universal analytical approximation of the carrier mobility in semiconductors for a wide range of temperatures and doping densities. Semiconductors, 2004, vol. 38, no. 1, pp. 56–60. doi: 10.1134/1.1641133

16. Volovichev I.N., Gurevich Yu.G. Generationrecombination processes in semiconductors. Semiconductors, 2001, vol. 35, no. 3, pp. 306–315. doi: 10.1134/1.1356153

17. Poklonski N.A., Kovalev A.I., Vyrko S.A. [Drift and diffusion of electrons via two-level (triplecharged) point defects in crystalline semiconductors]. Doklady Natsional’noi akademii nauk Belarusi [Doklady of the National Academy of Sciences of Belarus], 2014, vol. 58, no. 3, pp. 37–43.

18. Bleichner H., Jonsson P., Keskitalo N., Nordlander E. Temperature and injection dependence of the Shockley–Read–Hall lifetime in electron irradiated n-type silicon. J. Appl. Phys., 1996, vol. 79, no. 12, pp. 9142– 9148. doi: 10.1063/1.362585

19. L’vov V.S., Strikha V.I., Tretyak O.V., Shmatov A.A. Intercenter carrier transitions in partly disordered silicon: experiments and discussion of results. Sov. Phys. Solid State, 1989, vol. 31, no. 11, pp. 1953–1958.

20. Berezin Yu.A., Yanenko N.N. Method of splitting for solution of problems in semiconductor physics. USSR Rept. Phys. Math., 1984, JPRS-UPM-84-006, pp. 117.

21. Rzhevkin K.S. [Physical principles of semiconductor device operation]. Moscow, MGU Publ., 1986, 256 p. (in Russian).

22. Rosado L. Electrónica física y microelectrónica. Madrid, Paraninfo, 1987, 502 p.

23. Korshunov F.P., Markevich V.P., Medvedeva I.F., Murin L.I. Acceptor levels of a divacancy in silicon. Sov. Phys. Semicond., 1992, vol. 26, no. 11, pp. 1129–1131.

24. Schroder D.K. Carrier lifetimes in silicon. IEEE Trans. Electron Dev., 1997, vol. 44, no. 1, pp. 160–170. doi: 10.1109/16.554806

25. Muller R.S., Kamins T.I., Chan M. Device Electronics for Integrated Circuits. New York, Wiley, 2002, xx+528 p.

26. Komarov B.A. Special features of radiationdefect annealing in silicon p–n structures: The role of Fe impurity atoms. Semiconductors, 2004, vol. 38, no. 9, pp. 1041–1046. doi: 10.1134/1.1797482

27. Abakumov V.N., Perel’ V.I., Yassievich I.N. Nonradiative Recombination in Semiconductors. Amsterdam, North-Holland, 1991, xvi+320 p.doi: 10.1016/B978-0-444-88854-9.50002-3

28. Bourgoin J., Lannoo M. Point Defects in Semiconductors II. Experimental Aspects. Berlin, Springer, 1983, xvi+296 p. doi: 10.1007/978-3-642-81832-5

29. Emtsev V.V., Mashovets T.V. [Impurities and point defects in semiconductors]. Moscow, Radio i svyaz’ Publ., 1981, 248 p. (in Russian).

30. Milnes A.G. Deep Impurities in Semiconductors. New York, Wiley, 1973, xviii+526 p.

31. Shekhovtsov N.A. Differential capacitance of a p+–p junction. Semiconductors, 2012, vol. 46, no. 1, pp. 56–66. doi: 10.1134/S1063782612010174

32. Murygin V.I., Fattakhdinov A.U., Loktev D.A., Gundyrev V.B. Anomalous dependences of the diode barrier capacitance on bias voltage and temperature. Semiconductors, 2007, vol. 41, no. 10, pp. 1189–1196. doi: 10.1134/S106378260

33. Kyuregyan A.S., Yurkov S.N. Room-temperature avalanche breakdown voltages of p–n junctions made of Si, Ge, SiC, GaAs, GaP, and InP. Sov. Phys. Semicond., 1989, vol. 23, no. 10, pp. 1126–1131.

34. Maes W., De Meyer K., Van Overstraeten R. Impact ionization in silicon: a review and update. SolidState Electron., 1990, vol. 33, no. 6, pp. 705–718. doi: 10.1016/0038-1101(90)90183-F

35. Ng K.K. Complete Guide to Semiconductor Devices. New York, Wiley, 2002, xxiv+740 p. doi: 10.1002/9781118014769


Review

For citations:


Poklonski N.A., Kovalev A.I., Gorbachuk N.I., Shpakovski S.V. CALCULATION OF STATIC PARAMETERS OF SILICON DIODE CONTAINING δ-LAYER OF TRIPLE-CHARGED POINT DEFECTS IN SYMMETRIC p–n-JUNCTION. Devices and Methods of Measurements. 2018;9(2):130-141. (In Russ.) https://doi.org/10.21122/2220-9506-2018-9-2-130-141

Views: 840


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)