Preview

Devices and Methods of Measurements

Advanced search

Reflective Absorption IR Fourier-Spectroscopy of Photoresistive Films on Silicon

https://doi.org/10.21122/2220-9506-2025-16-1-69-76

Abstract

A comparative analysis of the reflectance-absorption spectroscopy method’s application using the diffuse reflection factory prefix DRIFT of the ALPHA IR spectrophotometer and the method of attenuated total reflection for study of the optical characteristics of the FP9120, AZ nLOF 2020, 2070, 5510 and KMP E3502 photoresist films with a thickness of 0.99–6.0 μm formed on the plates of monocrystalline silicon by centrifugation has been carried out. In the reflective absorption IR spectra absorption bands are observed on the background of interference bands which makes it possible to determine the refractive index of a photoresist at a known geometric film thickness. It is shown that the reflective absorption spectroscopy method using the diffuse reflection factory prefix DRIFT has both a higher sensitivity compared with the attenuated total reflection method and is suitable for non-destructive interoperative control during semiconductor electronics devices’s manufacturing. The most intense in the reflective absorption spectra of AZ nLOF and KMP E3502 photoresistive films are bands of valence vibrations of the aromatic ring (≈ 1500 cm-1), pulsation vibrations of the aromatic ring carbon skeleton (double maximum ≈ 1595 and 1610 cm-1) and a band with a maximum of ≈ 1430 cm-1 due to vibrations of the benzene ring, connected to the CH bridge. It was established that differences in the reflective absorption spectra of negative photoresist of different manufacturers – MicroChemicals (AZ nLOF series 2000) and Kempur Microelectronics (KMP E3502) are associated with various technologies of phenol-formaldehyde resin production and the residual solvent presence in the films.

About the Authors

D. I. Brinkevich
Belarusian State University
Belarus

Nezavisimosty Ave., 4, Minsk 220030



E. V. Grinyuk
Belarusian State University; Research Institute for Physical Chemical Problems of the Belarusian State University
Belarus

Nezavisimosty Ave., 4, Minsk 220030; 
Leningradskaya str., 14, Minsk 220006



V. S. Prosolovich
Belarusian State University
Belarus

Address for correspondence: 
Prosolovich V.S. - 
Belarusian State University, 
Nezavisimosty Ave., 4, Minsk
220030, Belarus

e-mail: prosolovich@bsu.by



S. D. Brinkevich
“My Medical Center – High Technologies” LLC
Russian Federation

Oktyabrsky Ave., 122, Vsevolozhsk 188640, Leningrad region



V. V. Kolos
INTEGRAL – “INTEGRAL” Holding Managing Company
Belarus

Kazintsa str., 121А, Minsk 220108



O. A. Zubova
INTEGRAL – “INTEGRAL” Holding Managing Company
Belarus

Kazintsa str., 121А, Minsk 220108



References

1. Sunipa R, Ghosh CK, Dey S, Pal AK. Solid State and Microelectronics Technology. Singapore: Bentham Science Publishers Pte. Ltd. 2023;407 p. DOI: 10.2174/9789815079876123010001

2. Granko SV, Volk SA, Leontiev AV, Kamyshan FF. Application of photoresistive masks for ion beam masking in CMOS technology of integrated circuits // Bulletin of the Nizhny Novgorod University. Ser. Physics. 2001;(2):41-47.

3. Moreau WM. Semiconductor lithography. Principles, practices and materials. N.Y., London: Plenum Press. 1988;952 p. DOI: 10.1007/978-1-4613-0885-0

4. Mack CA. Field Guide to Optical Lithography. – SPIE Press, Bellingham, WA. 2006;122 p.

5. Kharchenko AA, Fedotova YuA, Zur IA, Brinkevich DI, Brinkevich SD, Grinyuk EV, Prosolovich VS, Movchan SA, Remnev GE, Linnik SA, Lastovskii SB. Processes induced in DLC/Polyimide structures by irradiation with 60Co γ-rays. High Energy Chemistry. 2022; 56(5):354-362. DOI: 10.1134/S0018143922050058

6. Pretsch E, Bühlmann P, Affolter C. Structure Determination of Organic Compounds, Berlin: Springer, 2000.

7. Brinkevich SD, Grinyuk EV, Brinkevich DI, Prosolovich VS. Modification of Diazoquinone–Novolac Photoresist Films beyond the Region of Implantation of B+ Ions. High Energy Chemistry. 2020;54(5):342–351. DOI: 10.1134/S0018143920050045

8. Garcia ITS, Zawislak FC, Samios D. The effects of nuclear and electronic stopping powers on ion irradiated novolac–diazoquinone films. Applied Surface Science. 2004;228(1-4):63–76. DOI: 10.1016/j.apsusc.2003.12.027.

9. Brinkevich DI, Kharchenko AA, Prosolovich VS, Odzhaev VB, Brinkevich SD, Yankovski YuN. Reflection spectra modification of diazoquinone-novolak photoresist implanted with B and P ions. Russian Microelectronics. 2019:48(3):197-201. DOI: 10.1134/S1063739719020021

10. Askadsky AA, Kondrashenko VI. Computer materials science of polymers. Vol. 1. Atomic and molecular level. M.: Scientific world. 1999;544 p.

11. Poljansek I, Sebenik U, Krajnc M. Characterization of phenol-urea-formaldehyde resin by inline FTIR spectroscopy. Journal of Applied Polymer Science. 2006;99(5):2016-2028. DOI: 10.1002/app22161

12. Brinkevich DI, Grinyuk EV, Brinkevich SD, Prosolovich VS, Kolos VV, Zubova OA, Lastovskii SB. Fourier-IR spectroscopy of photoresist/silicon structures for explosive lithography. Journal of Applied Spectroscopy. 2024:90(6):1223-1228. DOI: 10.1007/s10812-024-01657-4


Review

For citations:


Brinkevich D.I., Grinyuk E.V., Prosolovich V.S., Brinkevich S.D., Kolos V.V., Zubova O.A. Reflective Absorption IR Fourier-Spectroscopy of Photoresistive Films on Silicon. Devices and Methods of Measurements. 2025;16(1):69-76. (In Russ.) https://doi.org/10.21122/2220-9506-2025-16-1-69-76

Views: 195


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)