Detection of Hidden Defects Induced by Thermomechanical Processing of Aluminum Substrates for Sensor Devices Using a Scanning Kelvin Probe
https://doi.org/10.21122/2220-9506-2025-16-1-47-54
Abstract
The object of the study was aluminum substrates for creating sensor devices based on anodic aluminum oxide, which underwent mechanical processing in the form of grinding and straightening. The subject of the study was the detection of residual mechanical stresses and other surface defects to assess the quality of this processing using the scanning Kelvin probe technique. The technique applied allows for the effective detection of residual plastic deformations of aluminum substrates resulting from their mechanical processing with a resolution sufficient to detect mechanical stresses associated with individual roughnesses.
About the Authors
A. L ZharinBelarus
Nezavisimosty Ave., 65, Minsk 220013
I. V. Gasenkova
Belarus
Nezavisimosty Ave., 68-1, Minsk 220012
A. K. Tyavlovsky
Belarus
Address for correspondence:
Tyavlovsky A.K. -
Belarusian National Technical University,
Nezavisimosty Ave., 65,
Minsk 220013, Belarus
e-mail: andrey_psf@tut.by
N. I. Mukhurov
Belarus
Nezavisimosty Ave., 68-1, Minsk 220012
S. I. Spitski
Belarus
Nezavisimosty Ave., 68-1, Minsk 220012
References
1. Losic D, Voelcker NH. Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Progress in Materials Science. 2013;58(5):636-704. DOI: 10.1016/j.pmatsci.2013.01.002
2. Santos A, Kumeria T, Losic D. Nanoporous Anodic Aluminum Oxide for Chemical Sensing and Biosensors. TrAC Trends in Analytical Chemistry. 2013;44:2538. DOI: 10.1016/j.trac.2012.11.007
3. Feng S, Ji W. Advanced Nanoporous Anodic Alumina-Based Optical Sensors for Biomedical Applications. Frontiers in Nanotechnology. 2021;3:678275-18. DOI: 10.3389/fnano.2021
4. Liu S, Tian J, Zhang W. Fabrication and application of nanoporous anodic aluminum oxide: A review // Nanotechnology. 2021;32(22):222001-20. DOI: 10.1088/1361-6528/abe25f
5. Ku C.-A. [et al.] Advances in the Fabrication of Nanoporous Anodic Aluminum Oxide and Its Applications to Sensors: A Review. Nanomaterials. 2023;13(21):(42): 2853-2895. DOI: 10.3390/nano13212853
6. Gasenkova IV, Mukhurov NI, Zhvavyi SP, Kolesnik EE. Optical characteristics of Cr2O3/Al2O3 composite structure. High Temperature Material Processes. 2021;25(3):1-10.
7. Gasenkova IV, Mukhurov NI, Andruhovich IM. Parameters of anodic aluminum oxide determined from Fabry-Perot oscillations in specular reflectance spectra. BSUIR Reports. 2024;22(6):14-20. DOI: 10.35596/1729-7648-2024-22-6-14-20. (In Russ.)
8. Dlugunovich VA. [et al.]. Conversion of light polarization using nanoporous aluminum oxide films. Journal of Applied Spectroscopy. 2015;82(5):766-772. (In Russ.).
9. Yasin Mahsin Vahioh [et al.]. Threshold detectors of ionizing and ultraviolet radiation based on nanostructured substrates made of anodic aluminum oxide. Edited by N.I. Mukhurov. Minsk: Bestprint. 2016:178 p.
10. Melitz W. [et al.]. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011;66:1-27.
11. Hui X. [et al.]. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties. Langmuir. 2017;33(11):2725-2733. DOI: 10.1021/acs.langmuir.6b04572
12. Findlay A. [et al.]. Non-Visual Defect Monitoring with Surface Voltage Mapping. ECS Journal of Solid State Science and Technology. 2015;5(4):3087-P3095. DOI: 10.1149/2.0161604jss
13. Ibragimov HI, Korolkov VA. Electron work function in physical and chemical research. Moscow: Intermet Engineering, 2002;526 p. (In Russ.).
14. Hua G, Li D. Generic relation between the electron work function and Young's modulus of metals. Applied Physics Letters. 2011;99:041907-3. DOI: 10.1063/1.3614475
15. Hua G, Li D. The correlation between the electron work function and yield strength of metals. Phys. Status Solidi B. 2012;249(8):1517-1520. DOI: 10.1002/pssb.201248051
16. Lu H, Hua G, Li D. Dependence of the mechanical behavior of alloys on their electron work function – An alternative parameter for materials design. Applied Physics Letters. 2013;103(26):261902-4. DOI: 10.1063/1.4852675
17. Liew Y. [et al.]. In Situ Time-Lapse SKPFM Investigation of Sensitized AA5083 Aluminum Alloy to Understand Localized Corrosion. J. Electrochem. Soc. 2020;167:141502–11. DOI: 10.1149/1945-7111/abc30d
18. Zerweck U. [et al.]. Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B. 2005;71:125424. DOI: 10.1103/PhysRevB.71.125424
19. Tyavlovsky KL. [et al.]. Surface electric potential measurement with a static probe. Devices and Metods of Measurement. 2023;14(2):135-144. (In Russ.). DOI: 10.21122/2220-9506-2023-14-2-135-144
Review
For citations:
Zharin A.L., Gasenkova I.V., Tyavlovsky A.K., Mukhurov N.I., Spitski S.I. Detection of Hidden Defects Induced by Thermomechanical Processing of Aluminum Substrates for Sensor Devices Using a Scanning Kelvin Probe. Devices and Methods of Measurements. 2025;16(1):47-54. https://doi.org/10.21122/2220-9506-2025-16-1-47-54