Preview

Микрополосковая патч-антенна диапазонов WiMAX, ISM и L для применения в сетях стандарта Sub-6 GHz. Обзор

https://doi.org/10.21122/2220-9506-2025-16-1-7-23

Аннотация

Быстрое развитие беспроводных систем связи следующего поколения выдвигает требования по высокоскоростной передаче данных, пропускной способности, высокой надёжности, низким задержкам и повышенной гибкости. Основные исследования при этом сосредоточены в области технологии 5G. Средний диапазон частот до 6 ГГц привлекает внимание исследователей вследствие простоты его реализации на базе существующей инфраструктуры. Диапазон Sub-6 GHz (ниже 6 ГГц) стандарта 5G находит широкое применение в технике беспроводной связи. Полосы частот ниже 6 ГГц назначены для различных приложений. В статье дан обзор текущего состояния антенн для технологии 5G для диапазона ниже 6 ГГц. На основе литературных данных выполнено обобщение методов проектирования и применения антенн диапазона ниже 6 ГГц, направленное на преодоление известных проблем их проектирования.

Об авторах

Атул Р. Чаудхари
Институт технологий и исследовательский центр имени Сандипа
Индия

Тримбак-роуд, г. Насик, 422213, Индия



Дипак П. Патил
Институт инженерии и менеджмента имени Сандипа
Индия

Адрес для переписки: 
Dipak P. Patil 
Sandip Institute of Engineering and Management,
Trimbak Road, Nashik, Maharashtra, 422213, India
e-mail: dipakpatil25@gmail.com



Список литературы

1. Nokia Siemens Networks. (2011). 2020: Beyond 4G: Radio Evolution for the Gigabit Experience, Espoo, Finland [Online]. Available: http://www.nsn.com/file/15036/2020-beyond-4g-radio-evolution-for-the-gigabit-experience.

2. Yang Z, Jianjun L, Faqiri H, Shafik W, Talal Abdulrahman A, Yusuf M, Sharawy AM. Green internet of things and big data application in smart cities development. Hindawi Complexity; 2021 (2021). DOI: 10.1155/2021/4922697

3. Cisco. Visual Networking Index. White paper, Feb. 2015 [Online]. Available: www.Cisco.com.

4. Liu D, Hong W, Rappaport TS, Luxey C, Hong W. What will 5G Antennas and Propagation Be? IEEE Transactions on Antennas and Propaga. 2017; 65(12):62056212. DOI: 10.1109/TAP.2017.2774707

5. Teubner LK, Henkel J, Bekkers R. Industry consortia in mobile telecommunications standards setting: purpose,organization and diversity. Telecommun Policy. 2021;45(3):102059.

6. Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next Generation 5G Wireless Networks: A Comprehensive Survey. IEEE Communications Surveys & Tutorials. 2016;18(3):1617-1655. DOI: 10.1109/COMST.2016.2532458

7. Pi Z, Khan F. An introduction to millimeterwave mobile broadband systems. IEEE Commun. Mag. 2011;49(6):101-107. DOI: 10.1109/MCOM.2011.5783993

8. Ikram M. Multi-Functional Antenna Structures for 4G/5G Wireless Communication Devices. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2021.

9. Rajatheva N, Atzeni I, Bjornson E, Bourdoux A, Buzzi S, Dore JB, Erkucuk S, Fuentes M, Guan K, Hu Y, [et al.]. White paper on broadband connectivity in 6G. arXiv 2020, arXiv:2004.14247. DOI: 10.48550/arXiv.2004.14247

10. Barun Mazumdar, Ujjal Chakraborty, Aritra Bhowmik, S.K.Chowdhury. Design of Compact Printed Antenna for WiMAX & WLAN Applications. Procedia Technology. 2012;(4):87-91. DOI: 10.1016/j.protcy.2012.05.011

11. Rajeshkumar V, Raghavan S. A Compact Metamaterial Inspired Triple Band Antenna for Reconfigurable WLAN/WiMAX Applications. International Journal of Electronics and Communications (AEÜ). 2015;69(1):274280. DOI: 10.1016/j.aeue.2014.09.012

12. Yalavarthi UD, Rukmini MSS, Madhav BT. A compact conformal printed dipole antenna for 5G based vehicular communication applications. Progress In Electromagnetics Research C. 2018;85:191-208. DOI: 10.2528/pierc18041906

13. Deshmukh AA, Ray KP. Compact broadband slotted rectangular microstrip antenna. IEEE Antennas Wireless Propag. Lett. 2009;8:1410-1413. DOI: 10.1109/LAWP.2010.2040061

14. Jia Y, Liu Y, Gong S. Slot-coupled broadband patch antenna. Electron. Lett. 2015;51(6):445-447. DOI: 10.1049/el.2014.3905

15. Chi YC, Chan CH, Luk KM. Study of a small wide-band patch antenna with double shorting walls. IEEE Antennas Wireless Propag. Lett. 2004;3:230-231. DOI: 10.1109/LAWP.2004.836579

16. Wi SH, Lee YS, YookJG. Wideband microstrip patch antenna with U-shaped parasitic elements. IEEE Trans. Antennas Propag. 2007;55(4):1196-1199. DOI: 10.1109/TAP.2007.893427

17. Ray KP, Kumar G, Lodwal HC. Hybrid-coupled broadband triangular microstrip antennas. IEEE Trans. Antennas Propag. 2003;51(1):139-141. DOI: 10.1109/TAP.2003.808541

18. Balanis CA. Antenna Theory: Analysis and Design, 3rd ed. Hoboken, NJ, USA: Wiley Interscience, 2005.

19. Wang H, Zhang R, Luo Y, Yang G. Compact eight-element antenna array for triple band MIMO operation in 5G mobile terminals. IEEE Access. 2020;8:1943319449. DOI: 10.1109/ACCESS.2020.2967651

20. Ojaroudi Parchin N, Al-Yasir YIA, Ali AH, Elfergani I, Noras JM, Rodriguez J, Abd-Alhameed RA. Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE Access. 2019;7. DOI: 10.1109/ACCESS.2019.2893112

21. Fields RFE. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300GHz. IEEE Standard. 2005;C 95.1. DOI: 10.1109/IEEESTD.2006.99501

22. Colburn JS, Rahmat-Samii Y. Patch antennas on externally perforated high dielectric constant substrates. IEEE Trans. Antennas Propag. 1999;47(12):1785-1794. DOI: 10.1109/8.817654

23. Farhad Farzami, Keyvan Forooraghi, Majid Norooziarab. Miniaturization of a Microstrip Antenna Using a Compact and Thin Magneto-Dielectric Substrate. IEEE Antennas Wireless Propag. Lett. 2011;10:15401542. DOI: 10.1109/LAWP.2011.2181968

24. Pinhas S, Shtrikman S. Comparison between computed and measured bandwidth of quarter-wave microstrip radiators. IEEE Trans. Antennas Propag. 1988;36(11):1615-1616. DOI: 10.1109/8.9713

25. Waterhouse R. Small microstrip patch antenna. Electron. Lett. 1995;31(8):604-605.

26. Deshmukh AA, Ray KP. Multi-Band Rectangular Microstrip Antennas. Microwave and Optical Technology Letters. 2007;49(11):2757-2761. DOI: 10.1002/mop.22880

27. Cao W, Zhang B, Liu A, Yu T, Guo D, Pan X. Multifrequency and dual-mode patch antenna based on electromagnetic bandgap (EBG) structure. IEEE Trans. Antennas Propag., 2012;60(12):6007-6012. DOI: 10.1109/TAP.2012.2211554

28. Chen S-W, Wang D-Y, Tu W-H. Dual-band/triband/broadband CPW-fed stepped-impedance slot dipole antennas. IEEE Trans. Antennas Propag. 2014;62(1):485490. DOI: 10.1109/TAP.2013.2287523

29. Foschini GJ. ‘Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J. 1996;1(2):41-59. DOI: 10.1002/bltj.2015

30. Jensen MA, Wallace JW. A review of antennas and propagation for MIMO wireless communications. IEEE Trans. Antennas Propag. 2004;52(11):2810-2824. DOI: 10.1109/TAP.2004.835272

31. Li X, Nie Z-P. Mutual coupling effects on the performance of MIMO wireless channels. IEEE Antennas Wireless Propag. Lett. 2004;3:344-347. DOI: 10.1109/LAWP.2004.840252

32. Shuhei Yamada, Debabani Choudhury, Chintan Thakkar, Anandaroop Chakrabarti, Kaushik Dasgupta, Saeid Daneshgar, and Bryce D. Horine. Cross-Polarization Discrimination and Port-to-Port Isolation Enhancement of Dual-Polarized Antenna Structures Enabling Polarization MIMO. IEEE Antennas Wireless Propag. Lett. 2019;18(11):2409-2413. DOI: 10.1109/lawp.2019.2928257

33. Zhang JF, Cheng YJ, Ding YR, Bai CX. A dualband shared aperture antenna with large frequency ratio, high aperture reuse efficiency, and high channel isolation. IEEE Trans. Antennas Propag. 2019;67(2):853-860. DOI: 10.1109/TAP.2018.2882697

34. Cecilia Occhiuzzi, Jack D. Hughes, Francesco R. Venturi, John Batchelor, and Gaetano Marrocco. Folded Comb-Line Array for Backscattering-Based Bodycentric Communications in the 5G Sub-6 GHz Band. IEEE Transactions on Antennas And Propagation. 2022;70(7):60366041. DOI: 10.1109/TAP.2022.3161287

35. Zhang B and Zhang YP. Analysis and synthesis of millimeter-wave microstrip grid-array antennas. IEEE Antennas Propag. Mag. 2011;53(6):42-55. DOI: 10.1109/MAP.2011.6157713

36. Irfansyah A, Harianto BB, Pambudiyatno N. Design of Rectangular Microstrip Antenna 1x2 Array for 5G Communication. Journal of Physics. DOI: 10.1088/1742-6596/2117/1/012028

37. Subhrakanta Behera, Debaprasad Barad. Circular polarized dual-band antenna for WLAN/Wi-MAX application. Int J RF and Microwave Comp Aid Eng. 2016;1-7. DOI: 10.1002/mmce.21046

38. Lun Cui, Jingli Guo, Ying Liu, and Chow-YenDesmond Sim. An 8-Element Dual-Band MIMO Antenna with Decoupling Stub for 5G Smartphone Applications. IEEE Antennas And Wireless Propagation Letters. 2019;18(10). DOI: 10.1109/LAWP.2019.2937851

39. Wang Y, Wang H, Yang G. Design of dipole beam-steering antenna array for 5G handset applications. in Proc. Prog. Electromagn. Res. Symp. 2016;2450-2453. DOI: 10.1109/PIERS.2016.7735012

40. Hong W, Ko ST, Lee Y, Back KH. Compact 28 GHz antenna array with full polarization flexibility under yaw, pitch, roll motions. in Proc. 9th Eur. Conf. Antennas Propag., 2015;1-3.

41. Li Z, Du Z, Takahashi M, Saito K, Ito K. Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals. IEEE Trans. Antennas Propag. 2012;60(2):473-481. DOI: 10.1109/TAP.2011.2173432

42. Zou X-J, Wang G-M, Wang Y-W, Li H-P. An efficient decoupling network between feeding points for multielement linear arrays. IEEE Trans. Antennas Propag. 2019;67(5):3101-3108. DOI: 10.1109/TAP.2019.2899039

43. Zhang S, Pedersen GF. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wireless Propag. Lett. 2016;15:166-169. DOI: 10.1109/LAWP.2015.2435992

44. Musa Hussain, Wahaj Abbas Awan, Esraa Musa Ali, Mohammed S. Alzaidi, Mohammad Alsharef, Dalia H. Elkamchouchi, Abdullah Alzahrani and Mohamed Fathy Abo Sree. Isolation Improvement of Parasitic Element-Loaded Dual-Band MIMO Antenna for mm-Wave Applications. Мicromachines. 2022;13(10):2-14. DOI: 10.3390/mi13111918

45. Huy Hung Tran and Nghia Nguyen-Trong. Performance Enhancement of MIMO Patch Antenna Using Parasitic Elements. IEEE Access. 2021;9:30011-30016. DOI: 10.1109/ACCESS.2021.3058340

46. Mehmet Ciydem, Emre A. Miran. Dual-Polarization Wideband Sub-6 GHz Suspended Patch Antenna for 5G Base Station. IEEE Antennas And Wireless Propagation Letters. 2020;19(7):1142-1146. DOI: 10.1109/LAWP.2020.2991967

47. Fan ST, Yin YZ, Lee B, Hu W, Yang X. Bandwidth Enhancement of a Printed Slot Antenna with a Pair of Parasitic Patches. IEEE Antennas Wireless Propag. Lett. 2012;11:1230-1233. DOI: 10.1109/LAWP.2012.2224311

48. Hannan P, Lerner D, Knittel G. Impedance matching a phased array antenna over wide scan angles by connecting circuits. IEEE Trans. Antennas Propag. 1965;13(1):28-34. DOI: 10.1109/TAP.1965.1138365

49. Mengting Yang, Changrong Liu, and Xueguan Liu. Design of π-Shaped Decoupling Network for DualPolarized Y-Probe Antenna Arrays. IEEE Antennas Wireless Propag. Lett. 2022;21(6):1129-1133. DOI: 10.1109/LAWP.2022.3158991

50. Run-Liang Xia, Shi-Wei Qu, Peng-Fa Li, Qi Jiang, and Zai-Ping Nie. An Efficient Decoupling Feeding Network for Microstrip Antenna Array. IEEE Antennas Wireless Propag. Lett. 2015;14:871-874. DOI: 10.1109/LAWP.2014.2380786

51. Khandelwal MK, Kanaujia BK, Kumar S. Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends. Int. J. Antennas Propag. 2017;1-22. DOI: 10.1155/2017/2018527

52. Mishra B, Verma RK, Yashwanth N, Singh RK. A review on microstrip patch antenna parameters of different geometry and bandwidth enhancement techniques. Int. J. Microwave and Wireless Techn. 2021;1-22. DOI: 10.1017/S1759078721001148

53. Rezvani M, Asadpor L, Vahedpour R. A compact dual-band microstrip monopole antenna for WiMAX and WLAN applications. 5th Iranian Conf. Eng. Electromagn. 2017;1-4.

54. Parbat RS, Tambe AR, Kadu MB, Labade RP. Dual polarized triple band 4_4 MIMO antenna with novel mutual coupling reduction approach. in Proc. IEEE Bombay Sect. Symp. (IBSS), 2015;1-6. DOI: 10.1109/IBSS.2015.7456633

55. Hanae Elftouh, Naima A. Touhami, Mohamed Aghoutane, Safae El Amrani, Antonio Tazon, and Mohamed Boussouis. Miniaturized Microstrip Patch Antenna with Defected Ground Structure. Progress In Electromagnetics Research C. 2014;55:25-33. DOI: 10.2528/PIERC14092302

56. Liton Chandra Paul, Sajeeb Chandra Das, Tithi Rani, S.M. Muyeen, Sk. A. Shezan & Md. Fatin Ishraque. A slotted plus-shaped antenna with a DGS for 5G Sub-6 GHz/WiMAX applications. Heliyon-Cell Press. 2022;8. DOI: 10.1016/j.heliyon.2022.e12040

57. Qiuyan Liang, Hanieh Aliakbari, Member, Buon Kiong Lau. Co-Designed Millimeter-Wave and Sub-6 GHz Antenna for 5G Smartphones. IEEE Antennas And Wireless Propagation Letters. 1999;21(10):1995-1999. DOI: 10.1109/LAWP.2022.3187782

58. Karen N. Olan-Nunez, Roberto S. MurphyArteaga, And Edgar Colin-Beltran. Miniature Patch and Slot Microstrip Arrays for IoT and ISM Band Applications. IEEE Access. 2020;8:102846-1028-102854. DOI: 10.1109/ACCESS.2020.2998739

59. Debatosh Guha, Manotosh Biswas, and Yahia M.M. Antar. Microstrip Patch Antenna With Defected Ground Structure for Cross Polarization Suppression. IEEE Antennas And Wireless Propag. Lett. 2005;4:455458. DOI: 10.1109/LAWP.2005.860211

60. Yang F, Rahmat-Samii Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 2003;51:2936-2946. DOI: 10.1109/TAP.2003.817983

61. Hitachi’s Research & Development. EBG Structure. Accessed: July 13, 2023. [Online]. Available: http://www.hitachi.com/rd/portal/glossary/e/ebg_structure.html.

62. Hossein Sarbandi Farahani, Mehdi Veysi, Manouchehr Kamyab, and Alireza Tadjalli. Mutual Coupling Reduction in Patch Antenna Arrays Using a UCEBG Superstrate. IEEE Antenna Wireless Propag. Lett. 2010;9:57-59. DOI: 10.1109/LAWP.2010.2042565

63. Martin Coulombe, Sadegh Farzaneh Koodiani, and Christophe Caloz. Compact Elongated Mushroom (EM)-EBG Structure for Enhancement of Patch Antenna Array Performances. IEEE Trans. Antennas Propag. 2010;58(4):1076-1086. DOI: 10.1109/TAP.2010.2041152

64. Xue C-D, Zhang XY, Cao YF, Hou Z, Ding CF. MIMO antenna using hybrid electric and magnetic coupling for isolation enhancement. IEEE Trans. Antennas Propag. 2017;65(10):5162-5170. DOI: 10.1109/TAP.2017.2738033

65. Yan Wang and Zhengwei Du. A Wideband Printed Dual-Antenna With Three Neutralization Lines for Mobile Terminals. IEEE Trans. Antennas Propag. 2014;62(3):1495-1500. DOI: 10.1109/TAP.2013.2295226

66. Eskandari H, Booket MR, Kamyab M, Veysi M. Investigation on a class of wideband printed slot antenna. IEEE Antennas Wireless Propag. Lett. 2010;9:1221-1224. DOI: 10.1109/LAWP.2010.2100360

67. Wen-Ling Chen, Guang-Ming Wang, and ChenXin Zhang. Bandwidth Enhancement of a Microstrip-LineFed Printed Wide-Slot Antenna With a Fractal-Shaped Slot. IEEE Trans. Antennas Propag. 2009;57(7):21762179. DOI: 10.1109/TAP.2009.2021974

68. WeiXing Liu, YinZeng Yin, WenLong Xu, and ShaoLi Zuo. Compact Open-Slot Antenna With Bandwidth Enhancement. IEEE Antenna Wireless Propag. Lett. 2011;10:850-853. DOI: 10.1109/LAWP.2011.2165197

69. Wen-Shan C, Kuang-Yuan K. Broadband design of the non-symmetric ground λ/4 open slot antenna with small size. Microw. J. 2007;50:110-121. DOI: 10.1109/APS.2006.1711123

70. Parismita A. Kashyap, Kumaresh Sarmah, Indrani Dakua, Sunandan Baruah. Gain and bandwidth enhancement of slotted microstrip antenna using metallic nanofilms for WLAN applications. Journal of King Saud University Science. 2023;35(1). DOI: 10.1016/j.jksus.2022.102374

71. Liang XL, Denidni TA, Zhang LN, Jin RH, Geng JP, Yu Q. Printed binomial -curved slot antennas for various wideband applications. IEEE Trans. Microw. Theory Tech. 2011;59(4):1058-1065. DOI: 10.1109/TMTT.2011.2113990

72. Chen WS, Hsieh FM. A broadband design for a printed isosceles triangular slot antenna for wireless communications. Microw. J. 2005;48(7):98-112.

73. Ma TG, TsengCH. An ultrawide band coplanar waveguide-fed tapered ring slot antenna. IEEE Trans. Antennas Propag. 2006;54(4):1105-1110. DOI: 10.1109/TAP.2006.872562

74. Bei Huang, Mochao Li, Weifeng Lin, Jun Zhang, Gary Zhang, and Fugen Wu. A Compact Slotted Patch Hybrid-Mode Antenna for Sub-6 GHz Communication. International Journal of Antennas and Propagation. 2020;2020(1). DOI: 10.1155/2020/8262361

75. Prutha Kulkarni, Raju Srinivasan. Compact polarization diversity patch antenna in L and WiMAX bands for IoT applications. International Journal of Electronics and Communications. 2021;136:153772. DOI: 10.1016/j.aeue.2021.153772

76. Rifaqat Hussain. Shared-Aperture Slot-Based Sub-6-GHz and mm-Wave IoT Antenna for 5G Applications. IEEE Internet of Things Journal. 2021;8(13):1080710814. DOI: 10.1109/JIOT.2021.3050383

77. Radisic V, Chew ST, Qian Y, Itoh T. High-efficiency power amplifier integrated with antenna. IEEE Microw. Guided Wave Lett. 1997;7(2):39-41. DOI: 10.1109/75.553052

78. Zahid L, Abu Bakar H, Abdul Rani KN, Sabapathy T, Jamlos MA, Rejab MRA, Musa KS, Hamzah D, Bahari N, Che Yob R. Artificial Magnetic Conductor to Enhance Microstrip Patch Textile Antenna Performance for WiMAX Application. 1st International Conference on Science, Engineering and Technology (ICSET) 2020. DOI: 10.1088/1757-899X/932/1/012076

79. Woncheol Lee, Yang-Ki Hong, Minyeong Choi, Hoyun Won, Jaejin Lee, Seong-Ook Park, Seok Bae, Hwan-Sik Yoon. Ferrite-Cored Patch Antenna With Suppressed Harmonic Radiation. IEEE Trans. Antennas Propag. 2018;66(6):3154-3159. DOI: 10.1109/TAP.2018.2816778

80. Robert Mark, Neha Rajak, Kaushik Mandal, Soma Das. Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application. Elsevier International Journal of Electronics and Communications. 2019;144-152. DOI: 10.1016/j.aeue.2019.01.011

81. Md. Abu Sufian, Niamat Hussain, Hussain Askari, Seong Gyoon Park, Kook Sun Shin, Nam Kim. Isolation Enhancement of a Metasurface-Based MIMO Antenna Using Slots and Shorting Pins. IEEE Access. 2021;9:7353373543. DOI: 10.1109/ACCESS.2021.3079965

82. Zhong Yu, Leiyan Huang, Qi Gao, Bingwen He. A Compact Dual-Band Wideband Circularly Polarized Microstrip Antenna for Sub-6G Application, Progress In Electromagnetics Research Letters. 2021;100:99-107. DOI: 10.2528/PIERL21082702

83. Mason Moore ZI, Lim S. A size-reduced, broadband, bidirectional, circularly polarized antenna for potential application in WLAN, WiMAX, 4G, and 5G frequency bands. Progress In Electromagnetics Research C. 2021;114:1-11. DOI: 10.2528/PIERC21051801

84. Xiaojun Tang, Haidong Chen, Bin Yu, Wenquan Che. Bandwidth Enhancement of a Compact DualPolarized Antenna for Sub-6G 5G CPE. IEEE Antennas And Wireless Propagation Letters. 2022;21(10):20152019. DOI: 10.1109/LAWP.2022.3188751

85. Ye LH, Li YJ, Wu D-L. Dual-wideband dualpolarized dipole antenna with T-shaped slots and stable radiation pattern. IEEE Antennas Wireless Propag. Lett. 2022;21(3):610-614. DOI: 10.1109/LAWP.2021.3139454

86. Bao Z, Nie Z, Zong X. A novel broadband dual-polarization antenna utilizing strong mutual coupling. IEEE Trans. Antennas Propag. 2014;62(1):450-454. DOI: 10.1109/TAP.2013.2287010

87. Shobhit Saxena, Binod Kumar Kanaujia, Santanu Dwari, Sachin Kumar, Hyun Chul Choi and Kang Wook Kim. Planar Four-Port Dual Circularly-Polarized MIMO Antenna for Sub-6 GHz Band. IEEE Access. 2020;8:9077990791. DOI: 10.1109/ACCESS.2020.2993897

88. Amany A. Megahed, Mohamed Abdelazim, Ehab H. Abdelhay, and Heba Y.M. Soliman. Sub-6 GHz Highly Isolated Wideband MIMO Antenna Arrays. IEEE Access. 2022;10:19875-19889. DOI: 10.1109/ACCESS.2022.3150278

89. Zhong Yu, Leiyan Huang, Qi Gao, Yanping Chen, A Compact Microstrip Four Port Dual Circularly Polarized MIMO Antenna for Sub-6G Application. Progress In Electromagnetics Research C. 2022;119:145159. DOI: 10.2528/PIERC22020602

90. Insha Ishteyaq, Issmat S. Masoodi, Khalid Muzaffar. Eight-Port Double Band Printed MIMO Antenna Investigated for Mutual-Coupling and SAR Effects for Sub-6GHz 5G Mobile Applications. Progress In Electromagnetics Research C. 2021;113:111-122. DOI: 10.2528/PIERC21050305

91. Tanmoy Sarkar, Abhijyoti Ghosh, Subhradeep Chakraborty, Singh LLK, Sudipta Chattopadhyay. Employment of mixed mode in single-layer microstrip antenna for ISM/WiMAX/WLAN/4G/Sub 6 GHz 5G mobile communication. Journal of Electromagnetic Waves and Applications. 2020;34(7). DOI: 10.1080/09205071.2020.1759463

92. Asadpor L, Nazari F. Two layer reconfigurable coaxial-fed antenna for S-band and GPS applications. Microw Opt Technol Lett. 2017;59(9):2141-2147. DOI: 10.1002/mop.30691

93. Varma R, Ghosh J. Multi-band proximity coupled microstrip antenna for wireless applications. Microw Opt Technol Lett. 2018;60(2):424-428. DOI: 10.1002/mop.30985

94. Harine Govindarajan, Santi C. Pavone, Loreto Di Donato, Paolo Di Mariano, Giuseppe Distefano, Patrizia Livreri, Prabagarane Nagaradjane, Concetto Squadrito, and Gino Sorbello. Design of a Compact Dual Circular-Polarized Antenna for L-Band Satellite Applications. IEEE Antennas And Wireless Propagation Letters. 2020;19(4):547-551. DOI: 10.1109/LAWP.2020.2971322


Рецензия

Для цитирования:


Чаудхари А.Р., Патил Д.П. Микрополосковая патч-антенна диапазонов WiMAX, ISM и L для применения в сетях стандарта Sub-6 GHz. Обзор. Приборы и методы измерений. 2025;16(1):7-23. https://doi.org/10.21122/2220-9506-2025-16-1-7-23

For citation:


Chaudhari A.R., Patil D.P. Microstrip Patch Antenna in WiMAX, ISM and L-band for Sub-6 GHz Application. Review. Devices and Methods of Measurements. 2025;16(1):7-23. https://doi.org/10.21122/2220-9506-2025-16-1-7-23

Просмотров: 378


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)