Wafer-Level Packaging of Microelectromechanical Systems Based on Frame Structure
https://doi.org/10.21122/2220-9506-2024-15-4-323-333
Abstract
Modern microelectromechanical systems (MEMS) are devices that incorporate microelectronic components and micromechanical structures on a single chip. Packaging is a mandatory stage in MEMS manufacturing. It ensures mechanical protection, sealing and transmission of electric energy and signals. The present work was aimed at developing a MEMS packaging method as a part of the consolidated manufacturing process. The method is developed on the example of a microwave MEMS switch. The switch manufacturing scheme includes conventional technologies used for producing gallium arsenide integrated circuits: optical lithography, liquid etching, electron-beam and magnetron deposition of metallic, resistive and dielectric films. The work presents a new inter-plate MEMS packaging based on a frame structure with a passivating film. The main purpose of the package frame layer is mechanical support for an upper layer of the sealing material. The frame layer should have the structure allowing for unimpeded removal of the sacrificial photoresist and be impermeable for the sealant. To satisfy the requirements stated, a metallic thin copper-film spatial frame was fabricated by galvanic deposition. The frame structure is a geodesic dome comprised of a complex network of triangle cells arranged in rows. The connected triangles create a self-supporting durable framework. The measurement and modeling results demonstrate that the round frame structure is more durable than a square frame with the same maximum cell dimensions. The stress-strain state for the round framework considerably alters depending on the number of rows of triangle cells. In addition to the mechanical support, the cell structure of the framework – with adequate selection of cell dimensions, solvent and sealant viscosities – allows for unimpeded penetration of the solvent (N-methyl-2-pyrrolidone, NMP) and removal of ma-P1225 photoresist sacrificial layers. At the same time, the layer structure is impermeable for the sealant (benzocyclobutene, BCB). The proposed MEMS switch packaging enables mass fabrication of GaAs integrated circuits in a single process, which expands their frequency range. The new plate-level packaging technology is absolutely compatible with MEMS fabrication technology without specific materials and equipment which reduces the dimensions and cost of MEMS.
About the Authors
E. S. BarbinRussian Federation
Lenina Avenue, 40, 634050, Tomsk, Russia
I. V. Kulinich
Russian Federation
Lenina Avenue, 40, 634050, Tomsk, Russia
T. G. Nesterenko
Russian Federation
Address for correspondence:
Nesterenko T.G. –
National Research Tomsk Polytechnic University,
Lenin Ave., 30, Tomsk 634050, Russia
e-mail: ntg@tpu.ru
A. N. Koleda
Russian Federation
Lenina Avenue, 30, 634050, Tomsk, Russia;
Lenina Avenue, 40, 634050, Tomsk, Russia
E. V. Shesterikov
Russian Federation
Lenina Avenue, 40, 634050
P. F. Baranov
Russian Federation
Lenina Avenue, 30, 634050, Tomsk, Russia
D. P. Il’yaschenko
Russian Federation
Lenina Avenue, 30, 634050, Tomsk, Russia
References
1. Xia D, Yu C, Kong L. The Development of Micromachined Gyroscope Structure and Circuitry Technology. Sensors.2014;14(1):1394-1473. DOI: 10.3390/s140101394
2. Xie H, Fedder GK. Fabrication, Characterization, and Analysis of a DRIE CMOS-MEMS Gyroscope. IEEE Sensors Journal. 2003;3(5):622-631. DOI: 10.1109/JSEN.2003.817901
3. Olsson RH, Bogart GR, Baker MS, Carr DW, Swiler TP, Clews PJ, Krishnamoorthya U. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sensors and Actuators A: Physical. 2008:283-290 pp. DOI: 10.1016/j.sna.2008.03.017
4. Samuelson SR, Xie HA. Large Piston Displacement MEMS Mirror with Electrothermal Ladder Actuator Arrays for Ultra-Low Tilt Applications. Journal of Microelectromechanical Systems. 2014;23(1):39-49. DOI: 10.1109/JMEMS.2013.2290994
5. Zhang H, Huang J, Yuan W, Chang HA. HighSensitivity Micromechanical Electrometer Based on Mode Localization of Two Degree-of-Freedom Weakly Coupled Resonators. Journal of Microelectromechanical Systems. 2016;25(5):937-946. DOI: 10.1109/JMEMS.2016.2598780
6. Pillai G, Zope AA, Tsai JM, Li S. Design and Optimization of SHF Composite FBAR Resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency. 2017;64(12):1864-1873. DOI: 10.1109/tuffc.2017.2759811
7. Li SS, Lin YW, Xie Y, Ren Z, Nguyen CT. Micromechanical hollow-disk ring resonators. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems. 2004:821-824 pp. DOI: 10.1109/MEMS.2004.1290711
8. Lee J E-Y, Yan J, Seshia AA. Study of lateral mode SOI-MEMS resonators for reduced anchor loss. Journal of Microelectromechanical Systems. 2011;21(4):1-10. DOI: 10.1088/0960-1317/21/4/045010
9. Lawes LA. Manufacturing costs for microsystems/ MEMS using high aspect ratio microfabrication techniques. Microsystem Technologies. 2006;13(1):85-95. DOI: 10.1007/s00542-006-0252-6
10. Beeby S, Ensel G, Kraft M, White N. MEMS Mechanical Sensors. 2004, Publisher: Artech House, Boston, London, 269 p.
11. Tilli M, Motooka T, Airaksinen V, Franssila S, Paulasto-Kröckel M, Lindroos V. Handbook of Silicon Based MEMS Materials and Technologies. 2015, Edition: 2nd, Publisher: Elsevier, 800 p.
12. Zhang M,Yang J, He Y, Yang F, Yang F, Han G, Ning J. Research on a 3D Encapsulation Technique for Capacitive MEMS Sensors Based on Through Silicon Via. Sensors. 2019;19(1):93. DOI: 10.3390/s19010093
13. Xu P, Si C, He Y, Wei Z, Jia L, Han G, Ning J, Yang F. A Novel High-Q Dual-Mass MEMS Tuning Fork Gyroscope Based on 3D Wafer-Level Packaging. Sensors. 2021;21(19). DOI: 10.3390/s21196428
14. Torunbalci MM, Gavcar HD, Yesil F, Alper SE, Akin T. An all-silicon process platform for wafer-level vacuum packaged MEMS devices. IEEE Sensors Journal. 2021;21(13). DOI: 10.1109/JSEN.2021.3073928
15. Moriyama M, Suzuki Y, Kumano M, Totsu K, Hirano H, Tanaka S. Metal-bonding-based hermetic wafer-level MEMS packaging technology using in-plane feedthrough: Hermeticity and high frequency characteristics of thick gold film feed-through. IEEJ Transactions on Sensors and Micromachines. 2019;38(10). DOI: 10.1541/ieejsmas.138.485
16. Nesterenko TG, Barbin ES, Koleda AN, Baranov PF, Tanaka S, Tsukamoto TA. Novel multiple-axis MEMS gyro-scope-accelerometer with decoupling frames. Sensor Review. 2019;39(5):670-681. DOI: 10.1108/SR-05-2018-0133
17. Temel O, Kalay YE, Akin T. Wafer-Level LowTemperature Solid-Liquid Inter-Diffusion Bonding With Thin Au-Sn Layers for MEMS Encapsulation. Journal of microelectromechanical systems. 2021;30(1):64-71. DOI: 10.1109/JMEMS.2020.3040039
18. Farisi MS Al, Hirano H, Tanaka S. Low-temperature hermetic thermo-compression bonding using electroplated copper sealing frame planarized by fly-cutting for wafer-level MEMS packaging. Sensors and Actuators A: Physical. 2018;279:671-679. DOI: 10.1016/j.sna.2018.06.021
19. Zhang Q, Cicek P-V, Nabki F, El-Gamal M. Thin-film encapsulation technology for above-IC MEMS wafer-level packaging. Journal of micromechanics and microengineering. 2013;23(12):1-10. DOI: 10.1088/0960-1317/23/12/125012
20. He R, Kim C-J. On-Wafer monolithic encapsulation by surface micromachining with porous polysilicon shell. Journal of Micromechanical Systems. 2007;16(2):462-472. DOI: 10.1109/jmems.2007.892797
21. Verheijden GJAM, Koops GEJ, Phan KL, JTM van Beek. Wafer-level encapsulation technology for MEMS devices using an HF permeable PECVD SIOC capping laye. IEEE 21st International Conference on Micro Electro mechanical systems. 2008:798-801 p. DOI: 10.1109/MEMSYS.2008.4443777
22. Lee BK, Choi DH. Use of nanoporous columnar thin film in the wafer-level packaging of MEMS devices. Journal of Micro-mechanics and Microengineering. 2010;(20):20-29. DOI: 10.1088/0960-1317/20/4/045002
23. Rajaraman V, Pakula LS, Pham HTM, Sarro PM, French PJ. Robust wafer-level thin-film encapsulation of micro-structures using low stress PECVD silicon carbide. IEEE 22nd International Conference on Micro Electro mechanical systems. 2009:140-143 p. DOI: 10.1109/MEMSYS.2009.4805338
24. Candler RN, Park Woo-Tae, Li Huimou, Yama G, Partridge A, Lutz M, Kenny TW. Single wafer encapsulation of MEMS devices. IEEE Transactions on Advanced Packaging. 2003;26(3):227-232. DOI: 10.1109/TADVP.2003.818062
25. Ng EJ, Lee HK, Ahn CH, Melamud R, Kenny TW. Stability of silicon microelectromechanical systems resonant thermometers. IEEE Sensors Journal. 2013;13(3):987-993. DOI: 10.1109/JSEN.2012.2227708
26. Yang Y, Ng EJ, Chen Y, Flader IB, Kenny TW, Hong VA. A Unified Epi-Seal Process for Fabrication of High-Stability Microelectromechanical Devices. Journal of Microelectromechanical Systems. 2016;25(3):489-497. DOI: 10.1109/JMEMS.2016.2537829
27. International Technology Roadmap for Semiconductors (ITRS). Micro-Electro-Mechanical Systems (MEMS) Summary. Available online: https://www.semiconductors.org/wp-content/uploads/2018/08/2013MEMS.pdf (accessed on 10 April 2022).
28. Qu H. CMOS MEMS Fabrication Technologies and Devices. Micromachines. 2016;7(1):14. DOI: 10.3390/mi7010014
29. Geodesic Domes and Space-Frame Structures, Available online: https://www.thoughtco.com/what-is-a-geodesic-dome-177713 (accessed on 10 may 2022).
Review
For citations:
Barbin E.S., Kulinich I.V., Nesterenko T.G., Koleda A.N., Shesterikov E.V., Baranov P.F., Il’yaschenko D.P. Wafer-Level Packaging of Microelectromechanical Systems Based on Frame Structure. Devices and Methods of Measurements. 2024;15(4):323-333. https://doi.org/10.21122/2220-9506-2024-15-4-323-333