Preview

Devices and Methods of Measurements

Advanced search

Wafer-Level Packaging of Microelectromechanical Systems Based on Frame Structure

https://doi.org/10.21122/2220-9506-2024-15-4-323-333

Abstract

Modern microelectromechanical systems (MEMS) are devices that incorporate microelectronic components and micromechanical structures on a single chip. Packaging is a mandatory stage in MEMS manufacturing. It ensures mechanical protection, sealing and transmission of electric energy and signals. The present work was aimed at developing a MEMS packaging method as a part of the consolidated manufacturing process. The method is developed on the example of a microwave MEMS switch. The switch manufacturing scheme includes conventional technologies used for producing gallium arsenide integrated circuits: optical lithography, liquid etching, electron-beam and magnetron deposition of metallic, resistive and dielectric films. The work presents a new inter-plate MEMS packaging based on a frame structure with a passivating film. The main purpose of the package frame layer is mechanical support for an upper layer of the sealing material. The frame layer should have the structure allowing for unimpeded removal of the sacrificial photoresist and be impermeable for the sealant. To satisfy the requirements stated, a metallic thin copper-film spatial frame was fabricated by galvanic deposition. The frame structure is a geodesic dome comprised of a complex network of triangle cells arranged in rows. The connected triangles create a self-supporting durable framework. The measurement and modeling results demonstrate that the round frame structure is more durable than a square frame with the same maximum cell dimensions. The stress-strain state for the round framework considerably alters depending on the number of rows of triangle cells. In addition to the mechanical support, the cell structure of the framework – with adequate selection of cell dimensions, solvent and sealant viscosities – allows for unimpeded penetration of the solvent (N-methyl-2-pyrrolidone, NMP) and removal of ma-P1225 photoresist sacrificial layers. At the same time, the layer structure is impermeable for the sealant (benzocyclobutene, BCB). The proposed MEMS switch packaging enables mass fabrication of GaAs integrated circuits in a single process, which expands their frequency range. The new plate-level packaging technology is absolutely compatible with MEMS fabrication technology without specific materials and equipment which reduces the dimensions and cost of MEMS.

About the Authors

E. S. Barbin
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Lenina Avenue, 40, 634050, Tomsk, Russia

 



I. V. Kulinich
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Lenina Avenue, 40, 634050, Tomsk, Russia

 



T. G. Nesterenko
National Research Tomsk Polytechnic University; Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Address for correspondence:
Nesterenko T.G.
National Research Tomsk Polytechnic University,
Lenin Ave., 30, Tomsk 634050, Russia
e-mail: ntg@tpu.ru

 



A. N. Koleda
National Research Tomsk Polytechnic University; Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Lenina Avenue, 30, 634050, Tomsk, Russia; 
Lenina Avenue, 40, 634050, Tomsk, Russia



E. V. Shesterikov
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Lenina Avenue, 40, 634050



P. F. Baranov
National Research Tomsk Polytechnic University
Russian Federation

Lenina Avenue, 30, 634050, Tomsk, Russia



D. P. Il’yaschenko
National Research Tomsk Polytechnic University
Russian Federation

Lenina Avenue, 30, 634050, Tomsk, Russia



References

1. Xia D, Yu C, Kong L. The Development of Micromachined Gyroscope Structure and Circuitry Technology. Sensors.2014;14(1):1394-1473. DOI: 10.3390/s140101394

2. Xie H, Fedder GK. Fabrication, Characterization, and Analysis of a DRIE CMOS-MEMS Gyroscope. IEEE Sensors Journal. 2003;3(5):622-631. DOI: 10.1109/JSEN.2003.817901

3. Olsson RH, Bogart GR, Baker MS, Carr DW, Swiler TP, Clews PJ, Krishnamoorthya U. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sensors and Actuators A: Physical. 2008:283-290 pp. DOI: 10.1016/j.sna.2008.03.017

4. Samuelson SR, Xie HA. Large Piston Displacement MEMS Mirror with Electrothermal Ladder Actuator Arrays for Ultra-Low Tilt Applications. Journal of Microelectromechanical Systems. 2014;23(1):39-49. DOI: 10.1109/JMEMS.2013.2290994

5. Zhang H, Huang J, Yuan W, Chang HA. HighSensitivity Micromechanical Electrometer Based on Mode Localization of Two Degree-of-Freedom Weakly Coupled Resonators. Journal of Microelectromechanical Systems. 2016;25(5):937-946. DOI: 10.1109/JMEMS.2016.2598780

6. Pillai G, Zope AA, Tsai JM, Li S. Design and Optimization of SHF Composite FBAR Resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency. 2017;64(12):1864-1873. DOI: 10.1109/tuffc.2017.2759811

7. Li SS, Lin YW, Xie Y, Ren Z, Nguyen CT. Micromechanical hollow-disk ring resonators. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems. 2004:821-824 pp. DOI: 10.1109/MEMS.2004.1290711

8. Lee J E-Y, Yan J, Seshia AA. Study of lateral mode SOI-MEMS resonators for reduced anchor loss. Journal of Microelectromechanical Systems. 2011;21(4):1-10. DOI: 10.1088/0960-1317/21/4/045010

9. Lawes LA. Manufacturing costs for microsystems/ MEMS using high aspect ratio microfabrication techniques. Microsystem Technologies. 2006;13(1):85-95. DOI: 10.1007/s00542-006-0252-6

10. Beeby S, Ensel G, Kraft M, White N. MEMS Mechanical Sensors. 2004, Publisher: Artech House, Boston, London, 269 p.

11. Tilli M, Motooka T, Airaksinen V, Franssila S, Paulasto-Kröckel M, Lindroos V. Handbook of Silicon Based MEMS Materials and Technologies. 2015, Edition: 2nd, Publisher: Elsevier, 800 p.

12. Zhang M,Yang J, He Y, Yang F, Yang F, Han G, Ning J. Research on a 3D Encapsulation Technique for Capacitive MEMS Sensors Based on Through Silicon Via. Sensors. 2019;19(1):93. DOI: 10.3390/s19010093

13. Xu P, Si C, He Y, Wei Z, Jia L, Han G, Ning J, Yang F. A Novel High-Q Dual-Mass MEMS Tuning Fork Gyroscope Based on 3D Wafer-Level Packaging. Sensors. 2021;21(19). DOI: 10.3390/s21196428

14. Torunbalci MM, Gavcar HD, Yesil F, Alper SE, Akin T. An all-silicon process platform for wafer-level vacuum packaged MEMS devices. IEEE Sensors Journal. 2021;21(13). DOI: 10.1109/JSEN.2021.3073928

15. Moriyama M, Suzuki Y, Kumano M, Totsu K, Hirano H, Tanaka S. Metal-bonding-based hermetic wafer-level MEMS packaging technology using in-plane feedthrough: Hermeticity and high frequency characteristics of thick gold film feed-through. IEEJ Transactions on Sensors and Micromachines. 2019;38(10). DOI: 10.1541/ieejsmas.138.485

16. Nesterenko TG, Barbin ES, Koleda AN, Baranov PF, Tanaka S, Tsukamoto TA. Novel multiple-axis MEMS gyro-scope-accelerometer with decoupling frames. Sensor Review. 2019;39(5):670-681. DOI: 10.1108/SR-05-2018-0133

17. Temel O, Kalay YE, Akin T. Wafer-Level LowTemperature Solid-Liquid Inter-Diffusion Bonding With Thin Au-Sn Layers for MEMS Encapsulation. Journal of microelectromechanical systems. 2021;30(1):64-71. DOI: 10.1109/JMEMS.2020.3040039

18. Farisi MS Al, Hirano H, Tanaka S. Low-temperature hermetic thermo-compression bonding using electroplated copper sealing frame planarized by fly-cutting for wafer-level MEMS packaging. Sensors and Actuators A: Physical. 2018;279:671-679. DOI: 10.1016/j.sna.2018.06.021

19. Zhang Q, Cicek P-V, Nabki F, El-Gamal M. Thin-film encapsulation technology for above-IC MEMS wafer-level packaging. Journal of micromechanics and microengineering. 2013;23(12):1-10. DOI: 10.1088/0960-1317/23/12/125012

20. He R, Kim C-J. On-Wafer monolithic encapsulation by surface micromachining with porous polysilicon shell. Journal of Micromechanical Systems. 2007;16(2):462-472. DOI: 10.1109/jmems.2007.892797

21. Verheijden GJAM, Koops GEJ, Phan KL, JTM van Beek. Wafer-level encapsulation technology for MEMS devices using an HF permeable PECVD SIOC capping laye. IEEE 21st International Conference on Micro Electro mechanical systems. 2008:798-801 p. DOI: 10.1109/MEMSYS.2008.4443777

22. Lee BK, Choi DH. Use of nanoporous columnar thin film in the wafer-level packaging of MEMS devices. Journal of Micro-mechanics and Microengineering. 2010;(20):20-29. DOI: 10.1088/0960-1317/20/4/045002

23. Rajaraman V, Pakula LS, Pham HTM, Sarro PM, French PJ. Robust wafer-level thin-film encapsulation of micro-structures using low stress PECVD silicon carbide. IEEE 22nd International Conference on Micro Electro mechanical systems. 2009:140-143 p. DOI: 10.1109/MEMSYS.2009.4805338

24. Candler RN, Park Woo-Tae, Li Huimou, Yama G, Partridge A, Lutz M, Kenny TW. Single wafer encapsulation of MEMS devices. IEEE Transactions on Advanced Packaging. 2003;26(3):227-232. DOI: 10.1109/TADVP.2003.818062

25. Ng EJ, Lee HK, Ahn CH, Melamud R, Kenny TW. Stability of silicon microelectromechanical systems resonant thermometers. IEEE Sensors Journal. 2013;13(3):987-993. DOI: 10.1109/JSEN.2012.2227708

26. Yang Y, Ng EJ, Chen Y, Flader IB, Kenny TW, Hong VA. A Unified Epi-Seal Process for Fabrication of High-Stability Microelectromechanical Devices. Journal of Microelectromechanical Systems. 2016;25(3):489-497. DOI: 10.1109/JMEMS.2016.2537829

27. International Technology Roadmap for Semiconductors (ITRS). Micro-Electro-Mechanical Systems (MEMS) Summary. Available online: https://www.semiconductors.org/wp-content/uploads/2018/08/2013MEMS.pdf (accessed on 10 April 2022).

28. Qu H. CMOS MEMS Fabrication Technologies and Devices. Micromachines. 2016;7(1):14. DOI: 10.3390/mi7010014

29. Geodesic Domes and Space-Frame Structures, Available online: https://www.thoughtco.com/what-is-a-geodesic-dome-177713 (accessed on 10 may 2022).


Review

For citations:


Barbin E.S., Kulinich I.V., Nesterenko T.G., Koleda A.N., Shesterikov E.V., Baranov P.F., Il’yaschenko D.P. Wafer-Level Packaging of Microelectromechanical Systems Based on Frame Structure. Devices and Methods of Measurements. 2024;15(4):323-333. https://doi.org/10.21122/2220-9506-2024-15-4-323-333

Views: 336


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)