Обзор носимых антенн для технологии 5G и телоцентрической беспроводной связи
https://doi.org/10.21122/2220-9506-2024-15-4-269-286
Аннотация
В последнее время большую популярность приобрели носимые антенны для так называемой телоцентрической беспроводной связи. Такие носимые антенны носятся непосредственно на теле человека как элемент одежды и обеспечивают связь без помощи рук, что предоставляет дополнительные удобства. Новейшая технология беспроводной связи 5G имеет ряд преимуществ перед 4G, таких как высокая скорость передачи данных, низкая латентность и др. Использование передовых и инновационных технологий позволяет разрабатывать носимые антенны на основе различных материалов. В настоящей статье проведён подробный анализ применения носимых антенн, разработанных специально для 5G и телоцентрической беспроводной связи. Рассмотрены вопросы выбора материала для антенн и методов их изготовления. В статье также рассматривается влияние радиуса изгиба антенн на их характеристики и надёжность.
Ключевые слова
Об авторах
Сухас Р. КалеИндия
Тримбак-роуд, г. Насик, 422213, Индия
Дипак П. Патил
Индия
Адрес для переписки:
Dipak P. Patil –
Sandip Institute of Engineering and Management,
Trimbak Road, Nashik, Maharashtra, 422213, India
e-mail: dipakpatil25@gmail.com
Список литературы
1. Cisco Visual Networking Index (VNI) Mobile Forecast Projects Nearly 10-fold Global Mobile Data Traffic Growth Over Next Five Years, 2015.
2. Wearable Technology Market Size, Share, Growth, Report 2032.
3. Paracha KN, Abdul Rahim SK, Soh PJ, and Khalily M. Wearable Antennas: A Review of Materials, Structures, and Innovative Features for Autonomous Communication and Sensing. IEEE Access. Institute of Electrical and Electronics Engineers Inc. 2019;(7):5669456712.
4. P.S. Hall and Y. Hao. Antennas and propagation for body centric communications. European Space Agency, (Special Publication) ESA SP. 2006. DOI: 10.1109/eucap.2006.4584864
5. P. Thesis, B. Akowuah, K. Panagiotis, and E. Kallos. King’s College London Novel Antenna Designs For Body-Centric Applications, 2017.
6. K. Ito, C.-H. Lin, and H.-Y. Lin, “Evaluation of Wearable and Implantable Antennas with Human Phantoms,” in Handbook of Antenna Technologies, Springer Singapore, 2015, pp. 1–24. DOI: 10.1007/978-981-4560-75-7_83-1
7. K.S. Nikita, Handbook of Biomedical Telemetry. Wiley, 2014. DOI: 10.1002/9781118893715.
8. N.A. Kamaruddin, S.N. Azemi, S.Z. Ibrahim, A.H. Azremi, and N.F. Kahar. Antenna for In-Body Communications, 2019.
9. F. Merli, L. Bolomey, E. Meurville, andA.K. Skrivervik. Implanted Antenna for Biomedical Applications. IEEE, 2008.
10. W.-C. Chen, C.W.L. Lee, A. Kiourti, and J.L. Volakis. A Multi-Channel Passive Brain Implant for Wireless Neuropotential Monitoring. IEEE J Electromagn RF Microw Med Biol. 2018; 2(4):262-269. DOI: 10.1109/JERM.2018.2877330
11. M. Särestöniemi, M. Sonkki, S. Myllymäki, and C. Pomalaza-Raez. Wearable Flexible Antenna for UWB On-Body and Implant Communications. Telecom. 2021;2(3):285-301. DOI: 10.3390/t10.3390/elecom2030019
12. A. Sani, M. Rajab, R. Foster, and Y. Hao. Antennas and propagation of implanted RFIDs for pervasive healthcare applications. Proceedings of the IEEE. 2010;98(9):1648-1655. DOI: 10.1109/JPROC 2010 .2051010
13. J. Zhang [et al.]. A Compact Dual-Band Implantable Antenna for Wireless Biotelemetry in Arteriovenous Grafts. IEEE Trans Antennas Propag. 2023;71(6):47594771. DOI: 10.1109/TAP.2023.3266786
14. Chow EY, Chlebowski AL, Chakraborty S, Chappell WJ, and Irazoqui PP. Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans Biomed Eng. 2010;57(6):1487-1496. DOI: 10.1109/TBME.2010.2041058
15. Zeng FG. Challenges in improving cochlear implant performance and accessibility. IEEE Trans Biomed Eng. 2017;64(8):1662-1664. DOI: 10.1109/TBME.2017.2718939
16. D. Reynolds [et al.]. A Leadless Intracardiac Transcatheter Pacing System. New England Journal of Medicine. 2016;374(6):533-541. DOI: 10.1056/nejmoa1511643
17. Amar A. Ben, Kouki AB, and Cao H. Power approaches for implantable medical devices. Sensors (Switzerland). 2015;15(11):28889-28914. DOI: 10.3390/s151128889
18. Agarwal K, Jegadeesan R, Guo YX, and Thakor NV. Wireless Power Transfer Strategies for Implantable Bioelectronics. IEEE Reviews in Biomedical Engineering. Institute of Electrical and Electronics Engineers. 2017;10:136-161. DOI: 10.1109/RBME.2017.2683520
19. R. Kangeyan and M. Karthikeyan. Miniaturized meander-line dual-band implantable antenna for biotelemetry applications. ETRI Journal, 2023. DOI: 10.4218/etrij.2023-0050
20. R. Kangeyan and M. Karthikeyan. A novel wideband fractal‐shaped MIMO antenna for brain and skin implantable biomedical applications. International Journal of Communication Systems. 2023;36(11). DOI: 10.1002/dac.5509
21. Jing D, Li H, Ding X, Shao W, and Xiao S. Compact and Broadband Circularly Polarized Implantab-le Antenna for Wireless Implantable Medical Devices. IEEE Antennas Wirel Propag Lett. 2023;22(6):1236-1240. DOI: 10.1109/LAWP.2023.3237558
22. Feng Y, Li Z, Qi L, Shen W, and Li G. A compact and miniaturized implantable antenna for ISM band in wireless cardiac pacemaker system. Sci Rep. 2022;12(1). DOI: 10.1038/s41598-021-04404-3
23. Kangeyan R, Karthikeyan M. Implantable dual band semi‐circular slotted patch with DGS antenna for biotelemetry applications. Microw Opt Technol Lett. 2023;65(1):225-230. DOI: 10.1002/mop.33462
24. Shah SAA, Yoo H. Scalp-Implantable Antenna Systems for Intracranial Pressure Monitoring. IEEE Trans Antennas Propag. 2018;66(4):2170-2173. DOI: 10.1109/TAP.2018.2801346
25. Iqbal A, Al-Hasan M, Mabrouk I Ben, Nedil M. A Compact Implantable MIMO Antenna for High-Data-Rate Biotelemetry Applications. IEEE Trans Antennas Propag. 2022;70(1):631-640. DOI: 10.1109/TAP.2021.3098606
26. 26. Ahmad S [et al.]. A Metasurface-Based SingleLayered Compact AMC-Backed Dual-Band Antenna for Off-Body IoT Devices. IEEE Access. 2021;9:159598159615. DOI: 10.1109/ACCESS.2021.3130425
27. Roudjane M, Khalil M, Miled A, Messaddeq Y. New generation wearable antenna based on multimaterial fiber for wireless communication and real-time breath detection. Photonics. 2018;5(4). DOI: 10.3390/photonics5040033
28. 28. Shakib MN, Moghavvemi M, Binti Wan Mahadi WNL. Design of a Tri-Band Off-Body Antenna for WBAN Communication. IEEE Antennas Wirel Propag Lett. 2017;16:210-213. DOI: 10.1109/LAWP .2016.2569819
29. Scarpello Maria Lucia [et al.]. High-Gain Textile Antenna Array System for Off-Body Communication. International Journal of Antennas and Propagation, Hindawi Limited, Crossref, 2012, pp. 1–12. DOI: 10.1155/2012/573438
30. Hertleer C, Rogier H, Vallozzi L, Van Langenhove L. A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans Antennas Propag. 2009;57(4):919-925. DOI: 10.1109/TAP.2009.2014574
31. Lin CH [et al.]. Dual-Mode Antenna for on-/offBody Communications (10 MHz/2.45 GHz). The 2014 International Workshop on Antenna Technology.
32. Al-Sehemi A, Al-Ghamdi A, Dishovsky N, Atanasova G, Atanasov N. A Flexible Multiband Antenna for Biomedical Telemetry. IETE J Res. 2023;69(1):189202. DOI: 10.1080/03772063.2020.1808536
33. Sabti HA, Thiel DV. A study of wireless communication links on a body-centric network during running. Procedia Engineering, Elsevier Ltd. 2014, pp. 3–8. DOI: 10.1016/j.proeng.2014.06.005
34. Kumar P, Ali T, SharmaA. Flexible Substrate based Printed Wearable Antennas for Wireless Body Area Networks Medical Applications (Review). Radioelectronics and Communications Systems. 2021;64(7):337-350. DOI: 10.3103/S0735272721070013
35. Scarpello ML, Kazani I, Hertleer C, Rogier H, Ginste D. Vande. Stability and efficiency of screen-printed wearable and washable antennas. IEEE Antennas Wirel Propag Lett. 2012;11:838-841. DOI: 10.1109/LAWP.2012.2207941
36. Anbalagan A, Sundarsingh EF, Ramalingam VS, Samdaria A, Gurion D. Ben, Balamurugan K. Realization and Analysis of a Novel Low-Profile Embroidered Textile Antenna for Real-time Pulse Monitoring. IETE J Res. 2022;68(6):4142-4149. DOI: 10.1080/03772063.2020.1787877
37. Chahat N, Zhadobov M, Sauleau R, Ito K. A compact UWB antenna for on-body applications. IEEE Trans Antennas Propag. 2011;59(4):1123-1131. DOI: 10.1109/TAP.2011.2109361
38. Kumar Vivek, Bharat Gupta. On-Body Measurements of SS-UWB Patch Antenna for WBAN Applications. AEU – International Journal of Electronics and Communications, no. 5, Elsevier BV, May 2016, pp. 668– 75. DOI: 10.1016/j.aeue.2016.02.003
39. Hazarika Bidisha [et al.]. A Multi-Layered DualBand on-Body Conformal Integrated Antenna for WBAN Communication. AEU – International Journal of Electronics and Communications, Elsevier BV, Oct. 2018, pp. 226–35. DOI: 10.1016/j.aeue.2018.08.021
40. Qas Elias, Bashar, and Ping Jack Soh. Design of a Wideband Spring Textile Antenna for Wearable 5G and IoT Applications Using Characteristic Mode Analysis. Progress In Electromagnetics Research M, The Electromagnetics Academy, 2022, pp. 177–89. DOI: 10.2528/pierm22062909
41. Gupta Anupma [et al.]. Design of a Patch Antenna with Square Ring-Shaped-Coupled Ground for on-/off Body Communication. International Journal of Electronics, no. 12, Informa UK Limited, June 2019, pp. 1814–28. DOI: 10.1080/00207217.2019.1625970
42. Randall Kirschman. Fabrication of Passive Components for High Temperature Instrumentation. WileyIEEE Press, 1999.
43. Das Goutam Kumar V[et al.]. Gain‐enhancement Technique for Wearable Patch Antenna Using Grounded Metamaterial. IET Microwaves, Antennas & Propagation, no. 15, Institution of Engineering and Technology (IET), Oct. 2020, pp. 2045–52. DOI: 10.1049/iet-map.2020.0083
44. Potey Pranita Manish and Kushal Tuckley. Design of Wearable Textile Antenna with Various Substrate and Investigation on Fabric Selection. 2018 3rd International Conference on Microwave and Photonics (ICMAP), IEEE, Feb. 2018. DOI: 10.1109/icmap.2018.8354539
45. Bakir Mete. Quartz Fiber Radome And Substrate For Aerospace Applications. Eskişehir Technical University Journal of Science and Technology A Applied Sciences and Engineering, no. 1, Anadolu Universitesi Bilim ve Teknoloji Dergisi-A: Uygulamali Bilimler ve Muhendislik, Mar. 2023, pp. 48–56. DOI: 10.18038/estubtda.1247951
46. Sreelakshmy R. [et al.]. A Wearable Type Embroidered Logo Antenna at ISM Band for Military Applications. Microwave and Optical Technology Letters, no. 9, Wiley, June 2017, pp.2159–63. DOI: 10.1002/mop.30697
47. Jalil Mohd Ezwan Bin [et al.]. Fractal Koch Multiband Textile Antenna Performance With Bending, Wet Conditions And On The Human Body. Progress In Electromagnetics Research, The Electromagnetics Academy, 2013, pp. 633–52. DOI: 10.2528/pier13041212
48. Monirujjaman Khan M [et al.]. Various TextilesBased Comparative Analysis of a Millimeter Wave Miniaturized Novel Antenna Design for Body-Centric Communications. Int J Antennas Propag. 2021;(2021). DOI: 10.1155/2021/2360440
49. Dirk Hohnholz Alan G. MacDiarmid 2001. Line patterning of conducting polymers New horizons for inexpensive, disposable electronic devices.
50. Y. Tao, Y. Tao, L. Wang, B. Wang, Z. Yang, and Y. Tai. High-reproducibility, flexible conductive patterns fabricated with silver nanowire by drop or fitto-flow method, 2013. [Online]. Available: http://www. nanoscalereslett.com/content/8/1/147
51. Roshni SB, Jayakrishnan MP, Mohanan P, Surendran KP. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric. Smart Mater Struct. 2017;26(10). DOI: 10.1088/1361-665X/aa7c40
52. N. Board, Handbook On Printing Technology, 2nd edition. Offset, Gravure, Flexo,Screen, 2011.
53. E. Halonen, K. Kaija, M. Mantysalo, A. Kemppainen, A. Kemppainen, and N. Bjorklund. Evaluation of printed electronics manufacturing line with sensor platform application. European Microelectronics and Packaging Conference, Rimini, Italy, 2009, pp. 1–8.
54. Faddoul R [et al.]. Optimisation of silver paste for flexography printing on LTCC substrate. Microelectronics Reliability. 2012;52(7):1483-1491. DOI: 10.1016/j.microrel.2012.03.004
55. Hasni U, Piper ME, Lundquist J, Topsakal E. Screen-Printed Fabric Antennas for Wearable Applications. IEEE Open Journal of Antennas and Propagation, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 591–598. DOI: 10.1109/OJAP.2021.3070919
56. Hayes GJ, So JH, Qusba A, Dickey MD, Lazzi G. Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans Antennas Propag. 2012;60(5):21512156. DOI: 10.1109/TAP.2012.2189698
57. Wang F, Arslan T. Inkjet-printed antenna on a flexible substrate for wearable microwave imaging applications. 2016 Loughborough Antennas & Propagation Conference (LAPC), IEEE, Nov. 2016, pp. 1–4. DOI: 10.1109/LAPC.2016.7807499
58. Joshi JG, Pattnaik SS, Devi S. Metamaterial embedded wearable rectangular microstrip patch antenna. Int J Antennas Propag. 2012;(2012). DOI: 10.1155/2012/974315
59. Desai A, Upadhyaya T, Patel J, Patel R, Palandoken M. Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications. Microw Opt Technol Lett. 2020;62(5,):2090-2103. DOI: 10.1002/mop.32287
60. A. Kumar, A. De, and R.K. Jain. Size Miniaturization and Isolation Enhancement of Two-Element Antenna for Sub-6 GHz Applications. IETE J Res, 2021. DOI: 10.1080/03772063.2021.1987994
61. Tighezza M, Rahim SKA,Islam MT. Flexible wideband antenna for 5G applications.Microw Opt Technol Lett. 2017;60:38-44.
62. Karad KV, Hendre VS. A flower bud-shaped flexible UWB antenna for healthcare applications. EURASIP J Wirel Commun Netw. 2023;2023(1). DOI: 10.1186/s13638-023-02239-2
63. Usman M [et al.]. The Impact of Bending on Radiation Characteristics of Polymer-Based Flexible Antennas for General IoT Applications, 2021. DOI: 10.3390/app
64. Ali U [et al.]. Design and comparative analysis of conventional and metamaterial-based textile antennas for wearable applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 2019;32(6). DOI: 10.1002/jnm.2567
65. Karad Kailash Vaijinath, Vaibhav S. Hendre. A Foam-Based Compact Flexible Wideband Antenna For Healthcare Applications. Progress In Electromagnetics Research C, The Electromagnetics Academy, 2022, pp. 197–212. DOI: 10.2528/pierc22061201
66. H.K. Bhaldar, S.K. Gowre, M.S. Ustad. Design of Circularly Polarized Compact Size Wearable Antenna for UWB and 5G Application. IETE J Res, 2022. DOI: 10.1080/03772063.2022.2054868
67. Aun NFM [et al.]. Revolutionizing Wearables for 5G: 5G Technologies: Recent Developments and Future Perspectives for Wearable Devices and Antennas. IEEE Microw Mag. 2017;18(3):108-124. DOI: 10.1109/MMM.2017.2664019
68. Ericsson Mobility Report November 2020.
69. R. Azim, R. Aktar, A.K.M.M.H. Siddique, L.C. Paul, and M.T. Islam. Circular patch planar ultrawideband antenna for 5G sub-6 GHz wireless communication applications.
70. Riaz A, Khan S, Arslan T. Design and Modelling of Graphene-Based Flexible 5G Antenna for Next-Generation Wearable Head Imaging Systems. Micromachines (Basel). 2023;14(3). DOI: 10.3390/mi14030610
71. Shoaib N, Shoaib S, Khattak RY, Shoaib I, Chen X, Perwaiz A. MIMO antennas for smart 5G devices. IEEE Access. 2018;6:77014-77021. DOI: 10.1109/ACCESS.2018.2876763
72. Mahajan RC, Vyas V. Wine Glass Shaped Microstrip Antenna with Woodpile Structure for Wireless Applications. Majlesi Journal of Electrical Engineering. 2019;13(1):37-44.
73. Sufian MA [et al.]. Isolation Enhancement of a Metasurface-Based MIMO Antenna Using Slots and Shorting Pins. IEEE Access. 2021;(9):73533-73543. DOI: 10.1109/ACCESS.2021.3079965
74. Anbarasu M, Nithiyanantham J. Performance Analysis of Highly Efficient Two-Port MIMO Antenna for 5G Wearable Applications. IETE J Res, 2021. DOI: 10.1080/03772063.2021.1926345
75. T. Addepalli, T. Vidyavathi, K. Neelima, M. Sharma, D. Kumar. Asymmetrical fed Calendula flowershaped four-port 5G-NR band (n77, n78, and n79) MIMO antenna with high diversity performance. Int J Microw Wirel Technol, May 2022. DOI: 10.1017/S1759078722000800
76. Peng Xiaoxu, Chengzhu Du. A Flexible CPWFed Tri-Band Four-Port MIMO Antenna for 5G/WIFI 6E Wearable Applications. AEU – International Journal of Electronics and Communications, Elsevier BV, Jan. 2024, p. 155036. DOI: 10.1016/j.aeue.2023.155036
77. Ericsson White Paper. 6G spectrum – enabling the future mobile life beyond 2030. March 2023.
78. J. Park, B. Kim, and W. Hong. 24‐1: Invited Paper: Optically Invisible Antenna‐on‐Display (AoD) Technologies: Review, Demonstration and Opportunities for Microwave, Millimeter‐Wave and Sub‐THz Wireless Applications. SID Symposium Digest of Technical Papers. 2021;52(1):293-296. DOI: 10.1002/sdtp.14672
Рецензия
Для цитирования:
Кале С.Р., Патил Д.П. Обзор носимых антенн для технологии 5G и телоцентрической беспроводной связи. Приборы и методы измерений. 2024;15(4):269-286. https://doi.org/10.21122/2220-9506-2024-15-4-269-286
For citation:
Kale S.R., Patil D.P. A Review of Wearable Antennas for 5G and Body-Centric Wireless Communication. Devices and Methods of Measurements. 2024;15(4):269-286. https://doi.org/10.21122/2220-9506-2024-15-4-269-286