Air Plasma Jet Generation Apparatus "ALOE"
https://doi.org/10.21122/2220-9506-2024-15-3-186-194
Abstract
The article presents an apparatus for generating an air plasma jet "ALOE". The device differs from known analogues in its compactness achieved due to absence of need to use inert gases (because they are replaced by ambient air) and the ability to determine the exposure dose. In terms of its characteristics this new product corresponds to world standards. There are no domestic analogues of it. Parameters and examples of using this device are presented. It will be in demand for healthcare, veterinary medicine, and cosmetology. The device can be used for disinfection of surfaces, including heat-sensitive ones, such as living tissues, and can serve as a prototype for development of various physiotherapeutic devices.
About the Authors
A. V. KazakBelarus
Address for correspondence:
Kazak A.V. –
B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus
Nezavisimosti Ave., 68-2, Minsk 220072, Belarus
e-mail: a.pavlova@ifanbel.bas-net.by
L. V. Simonchik
Belarus
Nezavisimosti Ave., 68-2, Minsk 220072
References
1. Schutze A. [et al.] The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans. Plasma Sci., 1998;26(16):85-94. DOI: 10.1109/27.747887
2. Lu X, Laroussi M. and Puech V. On atmosphericpressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci. Technol., 2012;21:034005. DOI: 10.1088/0963-0252/21/3/034005
3. Winter J, Brandenburg R. and Weltmann K-D. Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci. Technol., 2015;24:064001. DOI: 10.1088/0963-0252/24/6/064001
4. Lu X. and Ostrikov K. Guided ionization waves: The physics of repeatability. Appl. Phys. Rev., 2018;5: 031102. DOI: 10.1063/1.5031445
5. Morabit Y. [et al.] A review of the gas and liquid phase interactions in low-temperature plasma jets used for biomedical applications. Eur. Phys. J.D, 2021;75(32). DOI: 10.1140/epjd/s10053-020-00004-4
6. Lu X. [et al.] Cold atmospheric-pressure air plasma jet: Physics and opportunities. Phys. Plasmas, 2021;28:100501. DOI: 10.1063/5.0067478
7. Kong MG, Ganguly BN. and Hicks RF. Plasma jets and plasma bullets. Plasma Sources Sci. Technol., 2012;21:030201. DOI: 10.1088/0963-0252/21/3/030201
8. Sadowska JM. [et al.]Plasma medicine: The great prospects when physics meets medicine. Europhysics News, 2022;53(3):20-23. DOI: 10.1051/epn/2022303
9. Laroussi M. Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans Plasma Sci.,1996;24:1188–91. DOI: 10.1109/27.533129
10. Kelly-Wintenberg K. [et al.] Room temperature sterilization of surfaces and fabrics with a one atmosphere uniform glow discharge plasma. J Indust Microbiol Biotechnol., 1998;20:69-74. DOI: 10.1038/sj.jim.2900482
11. Laroussi M. [et al.] Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure. IEEE Trans Plasma Sci., 1999;27:34-5. DOI: 10.1109/27.763016
12. Laroussi M. Non-Thermal decontamination of biological media by atmospheric pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci., 2002;30:1409-15. DOI: 10.1109/TPS.2002.804220
13. Isbary G. [et al.] A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br.J. Dermatol. 2010;163:78. DOI: 10.1111/j.1365-2133.2010.09744.x
14. Laroussi M. From killing bacteria to destroying cancer cells: twenty years of plasma medicine. Plasma Process Polym., 2014;11:1138-41. DOI: 10.1002/ppap.201400152
15. Wandke D. “PlasmaDerm®-based on di_CAP technology”, In book: “Comprehensive Clinical Plasma Medicine”, 2018;495-502. DOI: 10.1007/978-3-319-67627-2_33
16. [Electronic Resource]. Available at: https://neoplas-med.eu/produkt/ [Accessed 31.05.2024].
17. [Electronic Resource]. Available at: https://adtechealthcare.com/adtec-steriplas/ [Accessed 31.05.2024].
18. Butenko AV. [et al.] Review of clinical applications of nitric oxide-containing air-plasma gas flow generated by Plason device. Clinical Plasma Medicine. 2020;19-20:100112. DOI: 10.1016/j.cpme.2020.100112
19. Arkhipenko VI. [et al.] Mechanisms underlying the formation of inactivation components of an air dc plasma jet. High Temperature Material Processes. 2018;22(4):273-278. DOI: 10.1615/HighTempMatProc.2018029287
20. Kazak AV. [et al.] Bactericidal Components in Helium and Air Plasma Jets of a Dielectric Barrier Discharge. Journal of applied spectroscopy. 2021;88:293298. DOI: 10.1007/s10812-021-01172-w
21. Kazak AV. [et al.] Inactivation of Consortiums of Microorganisms by an Air Plasma Jet at Atmospheric Pressure. Plasma Medicine. 2017;7(2):109-115. DOI: 10.1615/PlasmaMed.2017019263
22. Stepanova OM. [et al.] Spatial Distribution of Gas Temperature in an Air Plasma Jet of Direct Current Glow Microdischarge. Tech. Phys. Lett., 2018;44:841843. DOI: 10.1134/S1063785018090304
23. Kazak AV. [et al.] Bactericidal Components Diagnostics of Air Plasma Jets by IR and UV Absorption Spectroscopy. Journal of applied spectroscopy, 2024:91(3):352-360. (In Russ.).
Review
For citations:
Kazak A.V., Simonchik L.V. Air Plasma Jet Generation Apparatus "ALOE". Devices and Methods of Measurements. 2024;15(3):186-194. (In Russ.) https://doi.org/10.21122/2220-9506-2024-15-3-186-194