Preview

Design of Peltier Element Based on Semiconductors with Hopping Electron Transfer via Defects

https://doi.org/10.21122/2220-9506-2021-12-1-13-22

Abstract

The study of thermoelectric properties of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant Peltier elements. In this case, the spectrum of energy levels of hydrogen-like impurities and intrinsic point defects in the band gap (energy gap) of crystal plays an important role.

The purpose of this work is to analyze the features of the single-electron band model of semiconductors with hopping electron migration both via atoms of hydrogen-like impurities and via their own point triplecharged intrinsic defects in the c- and v-bands, as well as to search for the possibility of their use in the Peltier element in the temperature range, when the transitions of electrons and holes from impurity atoms and/or intrinsic defects to the c- and v-bands can be neglected.

For Peltier elements with electron hopping migration we propose: (i) an h-diode containing |d1)and |d2)-regions with hydrogen-like donors of two types in the charge states (0) and (+1) and compensating them hydrogen-like acceptors in the charge state (−1); (ii) a homogeneous semiconductor containing intrinsic t-defects in the charge states (−1, 0, +1), as well as ions of donors and acceptors to control the distribution of t-defects over the charge states. The band diagrams of the proposed Peltier elements in equilibrium and upon excitation of a stationary hopping electric current are analyzed.

A model of the h-diode containing hydrogen-like donors of two types |d1) and |d2) with hopping migration of electrons between them for 50 % compensation by acceptors is considered. It is shown that in the case of the reverse (forward) electrical bias of the diode, the cooling (heating) of the region of the electric double layer between |d1)and |d2)-regions is possible.

A Peltier element based on a semiconductor with point t-defects is considered. It is assumed that the temperature and the concentration of ions of hydrogen-like acceptors and donors are to assure all t-defects to be in the charge state (0). It is shown that in such an element it is possible to cool down the metal-semiconductor contact under a negative electric potential and to heat up the opposite contact under a positive potential.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus

Address for correspondence: Poklonski N.A. Belarusian State University, Nezavisimosti Ave., 4, Minsk 220030, Belarus

 e-mail: poklonski@bsu.by; poklonski@tut.by



S. A. Vyrko
Belarusian State University
Belarus

Nezavisimosti Ave., 4, Minsk 220030



A. I. Kovalev
Belarusian State University
Belarus

Nezavisimosti Ave., 4, Minsk 220030



I. I. Anikeev
Belarusian State University
Belarus

Nezavisimosti Ave., 4, Minsk 220030



N. I. Gorbachuk
Belarusian State University
Belarus

Nezavisimosti Ave., 4, Minsk 220030



References

1. Dresselhaus M.S., Chen G., Tang M.Y., Yang R., Lee H., Wang D., Ren Z., Fleurial J.-P., Gogna P. New directions for low-dimensional thermoelectric materials. Adv. Mater., 2007, vol. 19, no. 8, pp. 1043-1053. DOI: 10.1002/adma.200600527

2. Shevelkov A.V. Chemical aspects of the design of thermoelectric materials. Russ. Chem. Rev., 2008, vol. 77, no. 1, pp. 1-19. DOI: 10.1070/RC2008v077n01ABEH003746

3. Snarskii A.A., Zhenirovskii M.I., Bezsudnov I.V. Limiting values of the quality factor of thermoelectric composites. Semiconductors, 2008, vol. 42, no. 1, pp. 80-85. DOI: 10.1134/S1063782608010119

4. Dmitriev A.V., Zvyagin I.P. Current trends in the physics of thermoelectric materials. Phys. Usp., 2010, vol. 53, no. 8, pp. 789-803. DOI: 10.3367/UFNe.0180.201008b.0821

5. Mani P., Nakpathomkun N., Hoffmann E.A., Linke H. A nanoscale standard for the Seebeck coefficient. Nano Lett., 2011, vol. 11, no. 11, pp. 4679-4681. DOI: 10.1021/nl202258f

6. Upadhyaya M., Boyle C.J., Venkataraman D., Aksamija Z. Effects of disorder on thermoelectric properties of semiconducting polymers. Sci. Rep., 2019, vol. 9, no. 1, pp. 5820(1-11). DOI: 10.1038/s41598-019-42265-z

7. Liu X., Wang Z. Printable thermoelectric materials and applications. Front. Mater., 2019, vol. 6, pp. 88(1-5). DOI: 10.3389/fmats.2019.00088

8. Andreev A.G., Zabrodskii A.G., Egorov S.V., Zvyagin I.P. Thermopower of transmutation-doped Ge:Ga in the region for hopping conductivity. Semiconductors, 1997, vol. 31, no. 10, pp. 1008-1013. DOI: 10.1134/1.1187015

9. Andreev A.G., Zabrodskii A.G., Egorov S.V., Zvyagin I.P. Thermopower of neutron transmutation-doped Ge:Ga in the hopping region. Phys. Status Solidi B, 1998, vol. 205, no. 1, pp. 381-384. DOI: 10.1002/(SICI)1521-3951(199801)205:1<381::AIDPSSB381>3.0.CO;2-W

10. Poklonski N.A., Lopatin S.Yu. A lattice model of thermopower in hopping conduction: application to neutron-doped crystalline germanium. Phys. Solid State, 2001, vol. 43, no. 12, pp. 2219-2228. DOI: 10.1134/1.1427945

11. Ioffe A.F. Semiconductor Thermoelements and Thermoelectric Cooling. London, Infosearch, 1957, viii+184 p.

12. Nolas G.S., Sharp J., Goldsmid H.J. Thermoelectrics: Basic Principles and New Materials Developments. Berlin, Springer, 2001, viii+292 p. DOI: 10.1007/978-3-662-04569-5

13. Handbook of Thermoelectrics: Macro to Nano, ed. by D.M. Rowe. Boca Raton, CRC Press, 2006, 1014 p. DOI: 10.1201/9781420038903

14. Sun P., Wei B., Zhang J., Tomczak J.M., Strydom A.M., S0ndergaard M., Iversen B.B., Steglich F. Large Seebeck effect by charge-mobility engineering. Nat. Commun., 2015, vol. 6, pp. 7475(1-9). DOI: 10.1038/ncomms8475

15. Gurevich Yu.G., Logvinov G.N. Physics of thermoelectric cooling. Semicond. Sci. Technol., 2005, vol. 20, no. 12, pp. R57-R64. DOI: 10.1088/0268-1242/20/12/R01

16. Lu N., Li L., Liu M. A review of carrier thermoelectric-transport theory in organic semiconductors. Phys. Chem. Chem. Phys., 2016, vol. 18, no. 29, pp. 19503-19525. DOI: 10.1039/C6CP02830F

17. Masood K.B., Kumar P., Singh R.A., Singh J. Odyssey of thermoelectric materials: foundation of the complex structure. J. Phys. Commun., 2018, vol. 2, no. 6, pp. 062001(1-34). DOI: 10.1088/2399-6528/aab64f

18. Tomczak J.M. Thermoelectricity in correlated narrow-gap semiconductors. J. Phys.: Condens. Matter, 2018, vol. 30, no. 18, pp. 183001(1-70). DOI: 10.1088/1361-648X/aab284

19. Recatala-Gomez J., Suwardi A., Nandhakumar I., Abutaha A., Hippalgaonkar K. Toward accelerated thermoelectric materials and process discovery. ACS Appl. Energy Mater., 2020, vol. 3, no. 3, pp. 2240-2257. DOI: 10.1021/acsaem.9b02222

20. DiSalvo F.J. Thermoelectric cooling and power generation. Science, 1999, vol. 285, no. 5428, pp. 703706. DOI: 10.1126/science.285.5428.703

21. Vining C.B. Semiconductors are cool. Nature, 2001, vol. 413, no. 6856, pp. 577-578. DOI: 10.1038/35098159

22. Stafeev V.I. Thermoelectric and other phenomena in structures with nonequilibrium charge carriers and nanoparticles. Semiconductors, 2009, vol. 43, no. 10, pp. 1280-1287. DOI: 10.1134/S1063782609100054

23. Blakemore J.S. Electron capture and emission for midgap centers. J. Phys. Chem. Solids, 1988, vol. 49, no. 6, pp. 627-631. DOI: 10.1016/0022-3697(88)90193-X

24. Wilson A.H. Solid state physics 1925-33: opportunities missed and opportunities seized. Proc. R. Soc. Lond. A, 1980, vol. 371, no. 1744, pp. 39-48. DOI: 10.1098/rspa.1980.0054

25. Shockley W. Electrons and Holes in Semiconductors with Applications to Transistor Electronics. Princeton, D. Van Nostrand Co., Inc., 1950, xxiv+558 p.

26. Ross I.M. The invention of the transistor. Proc. IEEE., 1998, vol. 86, no. 1, pp. 7-28. DOI: 10.1109/5.658752

27. Kilby J.S. Turning potential into reality: The invention of the integrated circuit, in Nobel Lectures, Physics 1996-2000, ed. G. Ekspong. Singapore, World Scientific, 2002, pp. 474-485. DOI: 10.1142/4973

28. Smith G.E. Nobel Lecture: The invention and early history of the CCD. Rev. Mod. Phys., 2010, vol. 82, no. 3, pp. 2307-2312. DOI: 10.1103/RevModPhys.82.2307

29. Boyle W.S. Nobel Lecture: CCD-An extension of man's view. Rev. Mod. Phys., 2010, vol. 82, no. 3, pp. 2305-2306. DOI: 10.1103/RevModPhys.82.2305

30. Alferov Z.I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Rev. Mod. Phys., 2001, vol. 73, no. 3, pр. 767-782. DOI: 10.1103/RevModPhys.73.767

31. Kroemer H. Nobel Lecture: Qu sielectric fields and band offsets: teaching electrons new tricks. Rev. Mod. Phys., 2001, vol. 73, no. 3, pр. 783-793. DOI: 10.1103/RevModPhys.73.783

32. Seebauer E.G., Kratzer M.C. Charged point defects in semiconductors. Mater. Sci. Eng. R, 2006, vol. 55, no. 3-6, pp. 57-149. DOI: 10.1016/j.mser.2006.01.002

33. Zhang Y. Electronic structures of impurities and point defects in semiconductors. Chin. Phys. B, 2018, vol. 27, no. 11, pp. 117103(1-14). DOI: 10.1088/1674-1056/27/11/117103

34. Oyama K., Ri S.-G., Kato H., Takeuchi D., Makino T., Ogura M., Tokuda N., Okushi H., Yamasaki S. Carrier transport of diamond p+-i-n+ junction diode fabricated using low-resistance hopping p+ and n+ layers. Phys. Status Solidi A, 2011, vol. 208, no. 4, pp. 937-942. DOI: 10.1002/pssa.201026490

35. Poklonski N.A., Vyrko S.A., Poklonskaya O.N., Kovalev A.I., Zabrodskii A.G. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond. J. Appl. Phys., 2016, vol. 119, no. 24, pp. 245701(1-10). DOI: 10.1063/1.4954281

36. Bulyarskii S.V., Svetukhin V.V., L'vov P.E. Thermodynamics of complex formation and defect clustering in semiconductors. Semiconductors, 2000, vol. 34, no. 4, pp. 371-375. DOI: 10.1134/1.1187990

37. Coates R., Mitchell E.W.J. The optical and electrical effects of high concentrations of defects in irradiated crystalline gallium arsenide. Adv. Phys., 1975, vol. 24, no. 5, pp. 593-644. DOI: 10.1080/00018737500101471

38. Radiation Effects in Semiconductors, ed. By K. Iniewski. Boca Raton, CRC Press, 2011. xvi+415 p. DOI: 10.1201/9781315217864

39. Brudnyi V.N. Charge neutrality in semiconductors: defects, interfaces, surface. Russ. Phys. J., 2013, vol. 56, no. 7, pp. 754-756. DOI: 10.1007/s11182-013-0095-4

40. Aronov D.A., Knigin P.I., Korolev Yu.S., Rubinov V.V. Exclusion effect in semiconductors with noninjecting contacts. Phys. Status Solidi A, 1984, vol. 81, no. 1, pp. 11-45. DOI: 10.1002/pssa.2210810102

41. Blank T.V., Gol'dberg Y.A. Mechanisms of current flow in metal-semiconductor ohmic contacts. Semiconductors, 2007, vol. 41, no. 11, pp. 1263-1292. DOI: 10.1134/S1063782607110012

42. Poklonski N.A., Kovalev A.I., Gorbachuk N.I., Shpakovski S.V. [Calculation of static parameters of silicon diode containing δ-layer of point triple-charged defects in symmetric p-n-junction]. Devices and Methods of Measurements, 2018, vol. 9, no. 2, рр. 130-141 (in Russian). DOI: 10.21122/2220-9506-2018-9-2-130-141

43. Madelung O. Semiconductors: Data Handbook. Berlin, Springer, 2004, xiv+692 p. DOI: 10.1007/978-3-642-18865-7

44. Poklonski N.A., Vyrko S.A., Zabrodskii A.G. Electrostatic models of insulator-metal and metalinsulator concentration phase transitions in Ge and Si crystals doped by hydrogen-like impurities. Phys. Solid State, 2004, vol. 46, no. 6, pp. 1101-1106. DOI: 10.1134/1.1767252

45. Poklonski N.A., Stelmakh V.F. Screening of electrostatic fields in crystalline semiconductors by electrons hopping over defects. Phys. Status Solidi B, 1983, vol. 117, no. 1, pp. 93-99. DOI: 10.1002/pssb.2220880266

46. Poklonski N.A., Vyrko S.A., Poklonskaya O.N., Zabrodskii A.G. Transition temperature from band to hopping direct current conduction in crystalline semiconductors with hydrogen-like impurities: Heat versus Coulomb attraction. J. Appl. Phys., 2011, vol. 110, no. 12, pp. 123702(1-7). DOI: 10.1063/1.3667287

47. Poklonski N.A., Vyrko S.A., Dzeraviaha A.N. Thermal ionization energy of hydrogen-like impurities in semiconductor materials. Journal of the Belarusian State University. Physics, 2020, no. 2, pp. 28-41 (in Russian). DOI: 10.33581/2520-2243-2020-2-28-41

48. Kuz'min L.S. Supersensitive cold-electron bolometers in studies of dark matter and dark energy. Phys. Usp., 2005, vol. 48, no. 5, pp. 519-525. DOI: 10.1070/PU2005v048n05ABEH002128

49. Rogalski A. Progress in focal plane array technologies. Prog. Quant. Electron., 2012, vol. 36, no. 2-3, pp. 342-473. DOI: 10.1016/j.pquantelec.2012.07.001

50. Kiselev V.A. Covalent-ionic transition, and activity of metal-semiconductor interfaces. Sov. Phys. Solid State, 1991, vol. 33, no. 10, pp. 3070-3076.

51. McPherson M. Fermi level pinning in irradiated silicon considered as a relaxation-like semiconductor. Physica B, 2004, vol. 344, no. 1-4, pp. 52-57. DOI: 10.1016/j.physb.2003.07.006

52. Poklonski N.A., Vyrko S.A., Zabrodskii A.G. Field effect and capacitance of silicon crystals with hopping conductivity over point radiation defects pinning the Fermi level. Semiconductors, 2007, vol. 41, no. 11, pp. 1300-1306. DOI: 10.1134/S1063782607110048

53. Poklonski N.A. Disordered semiconductor materials. Int. Winter School on Semiconductor Physics 2019: Scientific Programme and Abstracts, St. Petersburg Zelenogorsk, Feb. 28-Mar. 4, 2019, SPb., Ioffe Institute, 2019, pp. 40-44 (in Russian).

54. Mott N. The mobility edge since 1967. J. Phys. C: Solid State Phys., 1987, vol. 20, no. 21, pp. 30753102. DOI: 10.1088/0022-3719/20/21/008

55. Kozub V.I., Rudin A.M. Transport of nonequilibrium phonons in disordered systems (review). Phys. Solid State, 1996, vol. 38, no. 2, pp. 189-208.

56. Smolyakov B.P., Khaimovich E.P. Dynamic processes in dielectric glasses at low temperatures. Sov. Phys. Usp., 1982, vol. 25, no. 2, pp. 102-115. DOI: 10.1070/PU1982v025n02ABEH004500


Review

For citations:


Poklonski N.A., Vyrko S.A., Kovalev A.I., Anikeev I.I., Gorbachuk N.I. Design of Peltier Element Based on Semiconductors with Hopping Electron Transfer via Defects. Devices and Methods of Measurements. 2021;12(1):13-22. https://doi.org/10.21122/2220-9506-2021-12-1-13-22

Views: 829


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)