Preview

Devices and Methods of Measurements

Advanced search

Effect of Hole Extraction from the Base Region of a Silicon p–n–p Transistor on its Reactive Impedance

https://doi.org/10.21122/2220-9506-2019-10-4-322-330

Abstract

Transistor structures are the basic elements of integrated circuitry and are often used to create not only transistors themselves, but also diodes, resistors, and capacitors. Determining the mechanism of the occurrence of inductive type impedance in semiconductor structures is an urgent task, the solution of which will create the prerequisites for the development of solid-state analogs of inductors. The purpose of the work is to establish the effect of extraction of non-equilibrium charge carriers from the base region on the reactive impedance of a bipolar p–n–p transistor.

Using impedance spectroscopy in the frequency range 20 Hz–30 MHz, the structures based on p–n–p transistors KT814G manufactured by JSC “INTEGRAL” were studied. It is shown that in the transistor structures it is possible to observe the “effect of negative capacitance” (inductive type impedance). It is established that the most probable cause of the inductive type impedance is the accumulation of uncompensated charge of holes in the base, the value of inductive impedance is influenced by both the injection efficiency in the base–emitter junction and the extraction efficiency in the base–collector junction.

The results can be applied in the elaboration of technologies for the formation of elements of silicon based integrated circuits with an impedance of inductive type.

About the Authors

N. I. Gorbachuk
Belarusian State University
Belarus

Address for correspondence: N.I. Gorbachuk – Belarusian State University, Nezavisimosti Ave., 4, Minsk 220030, Belarus     e-mail: gorbachuk@bsu.by



N. A. Poklonski
Belarusian State University
Belarus

Nezavisimosty Ave., 4, Minsk 220030, Belarus



Ya. N. Marochkina
Belarusian State University
Belarus

Nezavisimosty Ave., 4, Minsk 220030, Belarus



S. V. Shpakovski
JSC “INTEGRAL”
Belarus

Kazintsa str., 121 A, Minsk 220108, Belarus



References

1. Ng K.K. Complete Guide to Semiconductor Devices. New York, Wiley, 2002, xxiv+740 p.

2. Burghartz J.N., Edelstein D.C., Jahnes C.V., Uzoh C.E. Integrated circuit inductor, Patent USA 5884990, Int. Cl. 6 H01F 5/00, Assignee: International Business Machines Corporation, Filed: 14.10.1997, Date of Patent: Mar. 23, 1999.

3. Tietze U., Shenk Ch. Halbleiter-Schaltungstechnik. Berlin, Springer, 2002, xxvi+1606 p.

4. Penin N.A. Negative capacitance in semiconductor structures. Semiconductors, 1996, vol. 30, no. 4, pp. 340–343.

5. Gibadatov I.Yu., Glebov A.S. [Inductive impedance in metal – chalcogenide glass-like semi-conductor – crystal semiconductor structures]. Pis’ma v Zhurnal Tekhnicheskoi Fiziki [Soviet Technical Physics Letters], 1990, vol. 16, no. 1, pp. 22–25 (in Russian).

6. Butcher K.S.A., Tansley T.L., Alexiev D. An instrumental solution to the phenomenon of negative capacitance in semiconductors. Solid-State Electronics, 1996, vol. 39, no. 3, pp. 333–336. DOI: 10.1016/0038-1101(95)00143-3

7. Boltaev A.P., Burbaev T.M., Kalyuzhnaya G.A., Kurbatov V.A., Penin N.A. Negative capacitance in Ni– TiO2–p-Si heterostructures. Russian Microelectronics, 1995, vol. 24, no. 4, pp. 255–258.

8. Boltaev A.P., Burbaev T.M., Kurbatov V.A., Rzaev M.M., Penin N.A., Sibeldin N.N. [Charge accumulation effects and negative capacitance in heterostructures based on silicon]. Izvestiya Akademii Nauk. Seriya Fizicheskaya, 1999, vol. 63, no. 2, pp. 312– 316 (in Russian).

9. Parravicini G.B., Stella A., Ungureanu M.C., Kofman R. Low-frequency negative capacitance effect in system of metallic nanoparticles embedded in dielectric matrix. Applied Physics Letters, 2004, vol. 85, no. 2, pp. 302–304. DOI: 10.1063/1.1772872

10. Ershov M., Liu H.C., Li L., Buchanan M., Wasilewski Z.R., Jonscher A.K. Negative capacitance effect in semiconductor devices. IEEE Transactions on Electron Devices, 1998, vol. 45, no. 10. – P. 2196–2206. DOI: 10.1109/16.725254

11. Jones B.K., Santana J., McPherson M. Negative capacitance effects in semiconductor diodes. Solid State Communications, 1998, vol. 107, no. 2, pp. 47–50. DOI: 10.1016/S0038-1098(98)00162-8

12. Poklonski N.A., Shpakovski S.V., Gorbachuk N.I., Lastovskii S.B. Negative capacitance (impedance of the inductive type) of silicon p+–n junctions irradiated with fast electrons. Semiconductors, 2006, vol. 40, no. 7, pp. 803–807. DOI: 10.1134/S1063782606070128

13. McPherson M. Capacitive effects in neutronirradiated silicon diodes. Nuclear Instruments and Methods in Physics Research A, 2002, vol. 488, no. 1–2, pp. 100–109. DOI: 10.1016/S0168-9002(02)00480-1

14. Gorbachuk N.I., Poklonski N.A., Marochkina Ya.N., Shpakovski S.V. [Controlling of differential resistance of p–n-junctions of bipolar transistor in active mode by method of impedance spectroscopy]. Devices and Methods of Measurements, 2019, vol. 10, no. 3, рр. 253–262 (in Russian). DOI: 10.21122/2220-9506-2019-10-3-253-262

15. ULSI Technology, ed. by C.Y. Chang, S.M. Sze. New York, McGraw-Hill, 1996, xxvi+726 p.

16. Impedance Spectroscopy: Theory Experiment, and Applications, ed. by E. Barsoukov, J.R. Macdonald. Hoboken, Wiley, 2018, xviii+528 p. DOI: 10.1002/9781119381860

17. Poklonskii N.A., Gorbachuk N.I., Pototskii I.V., Trofimchuk D.A. Electrical conductivity of composite materials based on fineparticle silicon near the metal– insulator transition. Inorganic Materials, 2004, vol. 40, no 11, pp. 1133–1137. DOI: 10.1023/B:INMA.0000048209.93137.12

18. Poklonski N.A., Gorbachuk N.I., Shpakovski S.V., Filipenia V.A., Lastovskii S.B., Skuratov V.A., Wieck A., Markevich V.P. Impedance and barrier capacitance of silicon diodes implanted with high-energy Xe ions. Microelectronics Reliability, 2010, vol. 50, no. 6, pp. 813–820. DOI: 10.1016/j.microrel.2010.02.007

19. Sze S.M., Lee M.K. Semiconductor Devices: Physics and Technology, New York, Wiley, 2012, x+578 p.


Review

For citations:


Gorbachuk N.I., Poklonski N.A., Marochkina Ya.N., Shpakovski S.V. Effect of Hole Extraction from the Base Region of a Silicon p–n–p Transistor on its Reactive Impedance. Devices and Methods of Measurements. 2019;10(4):322-330. (In Russ.) https://doi.org/10.21122/2220-9506-2019-10-4-322-330

Views: 792


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)