ANALYSIS OF THE ELECTROPHYSICAL AND PHOTOELECTRIC PROPERTIES OF NANOCOMPOSITE POLYMERS BY THE MODIFIED KELVIN PROBE
https://doi.org/10.21122/2220-9506-2017-8-4-55-62
Abstract
At present for analysis of the homogeneity of materials properties are becoming widely used various modifications of a scanning Kelvin probe. These methods allow mapping the spatial distribution of the electrostatic potential. Analysis of the electropotential profile is not sufficient to describe any specific physical parameters of the polymer nanocomposites. Therefore, we use an external energy impact, such as light. Purpose of paper is the modification of the Kelvin scanning probe and the conduct of experimental studies of the spatial distribution and response of the electrostatic potential of the actual polymer nanocomposites to the optical probing.
Carried out the investigations on experimental Low density polyethylene composites. Carbon nanomaterials and nanoparticles of silicon dioxide or aluminum as fillers are used. As a result, maps of the spatial distribution of the electrostatic potential relative values and the surface photovoltage. Statistical analysis of the electrophysical and photoelectric properties homogeneity, depending on the component composition of the composites carried out. In addition, with reference to matrix polymers, the Kelvin scanning probe, in combination with the optical probing, made it possible to detect a piezoelectric effect. The latter, can used as a basis for the development of new methods for studying the mechanical properties of matrix polymers.
About the Authors
K. U. PantsialeyeuBelarus
Address for correspondence: Pantsialeyeu K.U. – Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus e-mail: nil_pt@bntu.by
A. U. Krautsevich
Belarus
A. Tizengauz sq., 7, Grodno 230023
I. A. Rovba
Belarus
V. I. Lysenko
Russian Federation
Institutskaya str., 4/1, Novosibirsk 630090
R. I. Vorobey
Belarus
Nezavisimisty Ave., 65, Minsk 220013
O. K. Gusev
Belarus
Nezavisimisty Ave., 65, Minsk 220013
A. L. Zharin
Belarus
Nezavisimisty Ave., 65, Minsk 220013
References
1. Subrahmanyam A., Kumar S. The Kelvin Probe for Surface Engineering: Fundamentals and Design. USA, CRC Press, 2010, 200 p.
2. Zharkikh Yu.S., Lysochenko S.V. Mechanic- electrical transformations in the Kelvin method. Applied Surface Science, 2017, vol. 400, pp. 71–76.
3. Melitz W., Shen J., Kummel A.C., Lee S. Kelvin probe force microscopy and its application. Surface Science Reports, 2011, vol. 66, pp. 1–27. doi: 10.1016/j.surfrep.2010.10.001
4. Noras M.A. Charge detection methods for dielectrics – Overview. Trek Application Note, 2003, no. 3005, pp. 1–13.
5. Galembeck A., Costa C.A.R., Silva M.C.V.M., Souza E.F., Galembeck F. Scanning electric potential microscopy imaging of polymers: electrical charge distribution in dielectrics. Polymer, 2001, vol. 42, pp. 4845−4851. doi: 10.1016 / S0032-3861 (00) 00921-6
6. Baytekin H.T., Patashinski A.Z., Branicki M., Baytekin B., Soh S., Grzybowski B.A. The mosaic of Surface Charge in Contact Electrification. Science, 2011, vol. 333, pp. 308–312. doi: 10.1126 / science.1201512
7. Sviridenok A.I., Krautsevich A.U., Zharin A.L., Tyavlovsky A.K. The effect of high-dispersion fillers on adhesive and frictional properties of Ethylene-Vinyl Acetate copolymer. Journal of Friction and Wear, 2014, iss. 35, no. 4, pp. 255–262.
8. Ebrahimi G., Rezaei F., Neshati J. Investigation on corrosion protection mechanism of polyaniline nanoparticles doped with phosphoric acid by scanning Kelvin probe and other electrochemical methods. Journal of the Taiwan Institute of Chemical Engineers, 2016, pp. 1–10. doi: 10.1016/j.jtice.2016.11.007
9. Schroder D. Surface voltage and surface photovoltage: history, theory and applications. Measurement Science & Technology, 2001, vol. 3, no. 12, pp. R16–R31.
10. Davies D.K. Charge generation of dielectric surfaces. Journal of Physics. D: Applied Physics, 1969, no. 2, pp. 1533–1537. doi: 10.1088/0022-3727/2/11/307
11. Vorobey R.I. Gusev O.K. Tyavlovsky A.K., Svistun A.I., Shadurskaja L., Yarzhembiyskaja N., Kerczynski K. Controlling the characteristics of photovoltaic cell based on their own semiconductors. Przeglad Elektrotechniczny, 2015, no. 8, pp. 81–85. doi:10.15199/48.2016.08.52
12. Zisman W.A. A new method of measuring contact potential differences in metals. Review of Scientific Instruments, 1932, no. 3, pp. 367–370. doi: 10.1063/1.1748947
13. Pantsialeyeu K.U., Mikitsevich U.A., Zharin A.L. [Design of the contact potentials difference probes]. Devices and Methods of Measurements, 2016, no. 1, vol. 7, pp. 7–15 (in Russian). doi : 10.21122/2220-9506-2016-7-1-7-15
14. Wicinski M., Burgstaller W., Hassel A. W. Lateral resolution in scanning Kelvin probe microscopy. Corrosion Science, 2016, vol. 104, pp. 1–8. doi: 10.1016/j.corsci.2015.09.008
15. Baikie I.D., Smith P.J S., Porterfield D.M., Estrup P.J. Multitip scanning bio-Kelvin probe. Review of Scientific Instruments, 1999, iss. 70. doi: 10.1063/1.1149678
Review
For citations:
Pantsialeyeu K.U., Krautsevich A.U., Rovba I.A., Lysenko V.I., Vorobey R.I., Gusev O.K., Zharin A.L. ANALYSIS OF THE ELECTROPHYSICAL AND PHOTOELECTRIC PROPERTIES OF NANOCOMPOSITE POLYMERS BY THE MODIFIED KELVIN PROBE. Devices and Methods of Measurements. 2017;8(4):386-397. (In Russ.) https://doi.org/10.21122/2220-9506-2017-8-4-55-62