Preview

Determination of the Velocity of a Torsional Wave Based on the Spectrum of an Acoustic Echogram of a Series of Multiple Reflections

https://doi.org/10.21122/2220-9506-2025-16-3-212-221

Abstract

Modern technical means, including those using computerized components, provide new signal processing capabilities using spectral analysis. A method for calculating the velocity of an acoustic wave С from the spectrum of an echogram containing multiple reflections of acoustic pulses is described. The method is based on the detection of spectral lines spaced from each other along the frequency axis by Δf , corresponding to the pulse repetition rate repeatedly reflected from the testing object’s end. The velocity С is calculated as the average value С = LΔf, where L is the length of the acoustic axis. The search for spectral lines is carried out in the frequency domain corresponding to the working area of the input path of the registration system. To accurately determine the position of the maximum of the spectral line, it is approximated by a parabola. The velocity of the torsional wave was calculated in a batch of pipes – blanks of a plunger of a deep rod pump with lengths from 5.245 to 5.248 m, a diameter of 59 mm and a wall thickness of 13.75 mm, in the amount of 20 pieces. The sounding is performed using an electromagnetic acoustic sensor mounted on the outer surface of the pipe next to the end face. The measurement was performed with an ADNSH-P flaw detector with a receiving path bandwidth from 9.5 to 63 kHz at a level of -6 dB. The echograms were obtained at a sampling frequency of 3.75 MHz and contain 10 reflections. The torsional wave velocities of the pipes in the batch range from 3294 to 3298 m/s

About the Authors

V. Strizhak
Kalashnikov Izhevsk State Technical University
Russian Federation

Address for correspondence:
Strizhak Victor -
Kalashnikov Izhevsk State Technical University,
Studencheskaya str., 7,
Izhevsk 426069,
Russia
 str@istu.ru



R. R. Khasanov
Ижевский государственный технический университет имени М.Т. Калашникова
Russian Federation

Studencheskaya str., 7,
Izhevsk 426069



References

1. Klyuyev V. V. [et al.]. Non-destructive testing. Moscow: Mashinostroenie Publ. 2004;6:832.

2. Baev A. R. [et al.]. Influence of Geometry and Boundary Conditions in Area of the Cohesion between Materials on the Reflection of an Ultrasonic Beam. Part 2. Features of Experimental Simulation. Devices and Methods of Measurements. 2021;12(4):301-310. DOI: 10.21122/2220-9506-2021-12-4-301-310

3. Baev A. R. [et al.]. Possibilities of Using of Surface and Subsurface Waves' Amplitude-Angle Characteristics for Control of Materials with Surface-Hardened Inhomogeneous Layer. Devices and Methods of Measurements. 2022;13(4):263-275. DOI: 10.21122/2220-9506-2022-13-4-263-275

4. Diogo A. R, Moreira B., Gouveia C. A.J., Tavares J. M. R. S. A Review of Signal Processing Techniques for Ultrasonic Guided Wave Testing. Metals. 2022;12(6):936. DOI: 10.3390/met12060936

5. Strizhak V. A., Pryakhin A. V., Khasanov R. R., Mkrtchyan S. S. Flaw Detection of Composite Rebar by Acoustic Wave Guided Technique. 2019;22(1):78-88. (In Russ.). DOI: 10.22213/2413-1172-2019-1-78-88

6. Zang X. [et al.]. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review. International Journal of Pressure Vessels and Piping. 2023;206:105033. DOI: 10.1016/j.ijpvp.2023.105033

7. Muravyeva O. V., Shikharev P. A., Murashov S. A. Propagation of guided acoustic waves in the shafts of centrifugal pumps with longitudinal cracks of axial holes. Testing. Diagnostics. 2024;27(307):14-29. (In Russ.). DOI: 10.14489/td.2024.01.pp.014-029

8. Baev A. R. [et al.]. Peculiarities of Optoacoustic Excitation and Propagation of Plate Waves in ThinWalled Оbjects. Devices and Methods of Measurements. 2023;14(4):233-241. DOI: 10.21122/2220-9506-2023-14-4-233-241

9. Murav'ev V. V., Murav'eva O. V., Vagapov T. R., Makarova V. E., Stepanova E. A. Acoustic and electromagnetic properties of civilian gun blanks. 2023;21(1):59-70. (In Russ.). DOI: 10.22213/2410-9304-2023-1-59-70

10. Muravyov V. V., Budrin A. Y. U., Sintsov M. A. Structuroscopy of heat-treated steel bars by the speed of propagation of rayleigh waves. 2020;18(2):37-43. (In Russ.). DOI: 10.22213/2410-9304-2020-2-37-43

11. Muravyeva O. V. [et al.]. Thermal Treatment Effect and Structural State of Rod-Shaped Assortment 40Kh Steel on the Speed of Ultrasound Waves and Poisson Coefficient. Steel in Translation. 2020;50(8):579-584. DOI: 10.3103/S0967091220080082

12. Muravyeva O. V. [et al.]. Acoustic properties of XM-5 ph maraging steel after energy deposition. Frontier Materials & Technologies. 2024;(2):87-100. (In Russ.) DOI: 10.18323/2782-4039-2024-2-68-8

13. Baev A. R., Mayorov A. L., Levkovich N. V., Asadchaya M. V. Features of the Surface and Subsurface Waves Application for Ultrasonic Evaluation of Physicomechanical Properties of Solids. Part 2. Strenghtned Inhomogeneous Surface Layer. Devices and Methods of Measurements. 2019;10(1):69-79. (In Russ.). DOI: 10.21122/2220-9506-2019-10-1-69-79

14. Strizhak V. A. Stand for determining the dependence of the rod wave velocity on the temperature in metal bars. Testing. Diagnostics. 2023;26;3(297):40-49. (In Russ.) DOI: 10.14489/td.2023.03.pp.040-049

15. Strizhak V. A., Pryakhin A. V., Khasanov R. R., Efremov A. B. Hardware-software complex for rods control by mirror-shadow method using multiple reflec tions. 2017;(6):565-571. (In Russ.). DOI: 10.17586/0021-3454 2017-60-6-565-571

16. Budenkov G. A., Muraveva O. V., Lebedeva T. N. Technology for defect detection in equipment in metal and petroleum-producing industries. Tyazh. Mashinostr. 2004;(11):28-30. (In Russ.).

17. Murav'ev V. V., Gushchina L. V. Structuroscopy of Coils after High-Temperature Mechanical Treatment on the Basis of Measurements of Rayleigh Waves Velocity. Devices and Methods of Measurements. 2022;13(2):147-154. (In Russ.). DOI: 10.21122/2220-9506-2022-13-2-147-154

18. Murav’ev V. V. [et al.]. Implementation of a pulse method for determining ultrasound velocity with high accuracy. 2021;19(2):13-19. (In Russ.). DOI: 10.22213/2410-9304-2021-2-13-19

19. Muraveva O. V., Brester A. F., Muravev V. V. Comparative Sensitivity of Informative Parameters of Electromagnetic-Acoustic Mirror-Shadow Multiple Reflections Method during Bar Stock Testing. Russian Journal of Nondestructive Testing. 2022;58(8):689-704. DOI: 10.1134/S1061830922080083

20. Muraveva O. V. [et al.]. Detecting Flaws in Pumping-Compressor Pipe Couplings by Magnetic, Eddy Current, and Ultrasonic Multiple-Shadow Testing Methods. Russian Journal of Nondestructive Testing. 2022;58(4):248-258. DOI: 10.1134/S1061830922040088

21. Muraveva O.V., Zlobin D.V. The acoustic path in the method of multiple reflections during nondestructive testing of linearly extended objects. Russian Journal of Nondestructive Testing. 2013;49(2):93-99. DOI: 10.1134/S1061830913020058

22. Murav'ev V. V. [et al.]. Analysis of reflected signals in testing cylindrical specimens by the multiple reflection echo-shadow method. Optoelectronics, Instrumentation and Data Processing. 2016;52(4):367-373. DOI: 10.3103/S8756699016040087

23. Muraviev V. V., Strizhak V. A., Khasanov R. R. Features of the software for the hardware-based system of acoustic tensometry and structural inspection of metal products. 2016;(2):71-75. (In Russ.).

24. Strizhak V. A. Acoustic Testing of Composite Rebars Taking into Account Reinforcement Ratio. Russian Journal of Nondestructive Testing. 2022;58(10):891-902. DOI: 10.1134/S1061830922600836

25. Zaitsev B. D., Borodina I. A., Teplykh A. A., Semyonov A. P. Determination of the Acoustic Wave Velocity and Attenuation in Liquids with Different Acoustic Impedances Using an Acoustic Interferometer. Acoustical Physics. 2023;69(4):503-509. DOI: 10.1134/s1063771023600493

26. Zverev V. A., Nikitina N. E. Measurement of the parameters of a pulse propagation path in a medium with noise, dispersion, and selective absorption. Acoustical Physics. 2006;52(4):408-412. DOI: 10.1134/S1063771006040051

27. Suchkov G. M. [et al.]. Nonсontact Spectral Express Method for Detecting Corrosion Damage to Metal Products. Russian Journal of Nondestructive Testing. 2020;56(1):12-19. DOI: 10.1134/S1061830920010118

28. Murashov V. V., Generalov A. S. PCM products and multilayer glued structures testing by ultrasonic reflection methods. Aviation materials and technologies. 2017;1(46):69-74. (In Russ.). DOI: 10.18577/2071-9140-2017-0-1-69-74

29. Serebrennikov V. L. Way of measurement of local tensions in the steel structures of mining machines. Occupational safety in industry. 2016;(6):42-46. (In Russ.).

30. Murav'eva O. V., Murashov S. A., Len'kov S. V. Torsional waves excited by electromagnetic–acoustic transducers during guided-wave acoustic inspection of pipelines. Acoustical Physics. 2016;62(1):117-124. DOI: 10.1134/S1063771015060093

31. Murav’eva O. V., Murav’ev V. V., Strizhak V. A. Acoustic waveguide con trol of linearly extended objects. Novosibirsk, SB RAS Publ., 2017;234 p. (In Russ.).

32. Yung TCh. [et al.]. Ultrasonic guided wave testing on pipeline corrosion detection using torsional T(0,1) guided waves. Journal of Mechanical Engineering and Sciences. 2022;9157-9166. DOI: 10.15282/jmes.16.4.2022.01.0725

33. Khomutov A. S., Muraviev V. V. Flaw detection in the deep-rod pump cylinder after ion nitriding. 2023;21(2):16-26. (In Russ.). DOI: 10.22213/2410-9304-2023-2-16-26.

34. Strizhak V. A. [et al.]. Waveguide acoustic control of pipes – billets of deep rod pumps. Vestnik IzhGTU imeni M.T. Kalashnikova. 2024;27(3):86-100. (In Russ.). DOI: 10.22213/2413-1172-2024-3-86-100

35. Vinogradov S. Applications of Linear Scanning Magnetostrictive Transducers (MST) for Finding Hardto-Detect Anomalies in Structural Components. Research and Review Journal of Nondestructive Testing. 2023;1(1). DOI: 10.58286/28141

36. Vinogradov S., Cobb A., Fisher J. New Magnetostrictive Transducer Designs for Emerging Application Areas of NDE. Materials. 2018;11(5):755. DOI: 10.3390/ma11050755


Review

For citations:


Strizhak V., Khasanov R.R. Determination of the Velocity of a Torsional Wave Based on the Spectrum of an Acoustic Echogram of a Series of Multiple Reflections. Devices and Methods of Measurements. 2025;16(3):212-221. (In Russ.) https://doi.org/10.21122/2220-9506-2025-16-3-212-221

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)