Prototype of a Digital Holographic Microscope for Studying Marine Plankton
https://doi.org/10.21122/2220-9506-2025-16-3-185-190
Abstract
Marine plankton is a key component of aquatic ecosystems. Development of modern and accessible tools for studying planktonic organisms is a relevant and important task. Aim of the study was to develop a device that would be highly accessible and useful for researchers of marine plankton. A prototype of a lensless microscope with an original design that utilizes digital holographic microscopy to visualize marine plankton is presented. Combination of an FDM-manufactured frame, a minimal set of optical and electronic components, and the ability to use open-source software makes it a viable alternative to conventional microscopes for studying planktonic organisms. The device is designed to work with both standard microscope slides and a flow cell, enabling automated sample processing and rapid analysis while, preserving the sample for subsequent conservation and in-depth examination using standard methods.
About the Authors
A. P. KhurchakRussian Federation
Kapitanskaya str., 2,
Sevastopol 299011
A. I. Khurchak
Russian Federation
Address for correspondence:
Khurchak A.I. -
Institute of Biology of the Southern Seas of the RAN,
Nakhimov Ave., 2,
Sevastopol 299011,
Russia
e-mail: alenakhurchak@ibss-ras.ru
References
1. Kim M. K. Digital Holographic Microscopy. Springer Series in Optical Sciences (2011). DOI: 10.1007/978-1-4419-7793-9
2. Gabor D. A New Microscopic Principle. Nature, 1948;161(4098):777-778. DOI: 10.1038/161777a0
3. Erickson J. S., Hashemi N., Sullivan J. M., Weidemann A. D., Ligler F. S. In Situ Phytoplankton Analysis: There’s Plenty of Room at the Bottom. Analytical Chemistry. 2011;84(2):839-850. DOI: 10.1021/ac201623k
4. Ferraro P., Wax A., Zalevsky Z. Coherent Light Microscopy. SpringerSeries in Surface Sciences. 2011. DOI: 10.1007/978-3-642-15813-1
5. Dyomin V., Polovtsev I., Davydova A., Kirillov N. Spectroscopic Aspects of Underwater Digital Holography of Plankton. Scientific Reports. 2025;(15):1884.
6. Dyomin V. V. [et al.]. Plankton Concentration Model Consistent with Natural Events and Monitoring Series of Holographic Measurements. Journal of Marine Science and Engineering. 2025;(13):140.
7. Dyomin V. V. [et al.]. Calibration for the magnification of a submersible digital holographic camera during the study of particles in natural conditions. Applied Optics. 2025;64(7):49-57.
8. Dyomin V. V. [et al.]. Monitoring Bioindication of Plankton through the Analysis of the Fourier Spectra of the Underwater Digital Holographic Sensor Data. Sensors. 2024;24(7):2370.
9. Garcia-Sucerquia J. [et al.]. Digital in-line holographic microscopy. Applied Optics. 2006;45:836-850. DOI: 10.1364/ao.45.000836
10. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. DOI: 10.1038/nmeth.2089
11. Piedrahita-Quintero P., Castañeda R., GarciaSucerquia J. Numerical wave propagation in ImageJ. Applied Optics. 2015;54(21):6410-5. DOI: 10.1364/AO.54.006410
12. Shybanov E. B., Lee M. E., Berthon J-F., Zibordi G. Intensification of light scattering as a result of mixing of pure waters with different densities. Physical Oceanography. 2011;21(4):254-260. DOI: 10.1007/s11110-011-9120-8
13. Latychevskaia T., Fink H.–W. Practical algorithms for simulation and reconstruction of digital in-line holograms. Applied Optics. 2015;54(9):2424. DOI: 10.1364/ao.54.002424
Review
For citations:
Khurchak A.P., Khurchak A.I. Prototype of a Digital Holographic Microscope for Studying Marine Plankton. Devices and Methods of Measurements. 2025;16(3):185-190. (In Russ.) https://doi.org/10.21122/2220-9506-2025-16-3-185-190