Disordered Tin Oxide Films for Thermoelectric Applications: Correlation between Microstructure, Electrical Conductivity and Seebeck Coefficient
https://doi.org/10.21122/2220-9506-2025-16-2-87-97
Abstract
The aim of the work was to establish a correlation between structural, electrical and thermoelectric properties of the disordered tin oxide films to study the possibility of their further applications as materials for thermoelectric converters. Disordered multiphase tin oxide films were synthesized by magnetron sputtering of tin onto glass substrates in argon plasma and subsequent two-stage annealing in air. The structural, electrical and thermoelectric properties of the films were varied by changing the temperature at the 2nd stage of annealing in the range of 350–450 °C. It was found that the films synthesized at a temperature of 350 °C during the 2nd stage of annealing procedure have an amorphous structure and are characterized by the highest value of specific electrical conductivity σ ≈ 28.5 S/m. Samples fabricated at temperatures 400 and 450 °C during the 2nd stage of annealing are characterized by polycrystalline multiphase structure with both stoichiometric (SnO, SnO2) and non-stoichiometric (Sn2O3 and Sn3O4) phases of tin oxides in their composition (with prevailing of SnO2 phase for the samples annealed at 450 °C). It was found that these samples are characterized by a higher value of the Seebeck coefficient S (–156 μV/K and –163 μV/K, respectively) compared to the amorphous films, for which the value S = –90 μV/K. It was found that the electrical conductivity of both amorphous and polycrystalline tin oxide films in the temperature range of ≈ 80–300 K can be described within the frame of a model that assumes the activation of electrons from impurity levels in the band gap associated with oxygen vacancies in different charge states. It was demonstrated that for all types of the samples, the Pisarenko’s formula can be applied to evaluate the relationship between the Seebeck coefficient S and the position of the Fermi level EF if the parameter r < –2.
Keywords
About the Authors
V. K. KsenevichBelarus
Address for correspondence:
Ksenevich V.K. –
Belarusian State University,
Nezavisimosti Ave., 4, Minsk 220030, Belarus
e-mail: ksenevich@bsu.by
V. A. Dorosinets
Belarus
Nezavisimosti Ave., 4, Minsk 220030
M. A. Samarina
Belarus
Nezavisimosti Ave., 4, Minsk 220030
N. A. Poklonski
Belarus
Nezavisimosti Ave., 4, Minsk 220030
I. A. Svito
Belarus
Nezavisimosti Ave., 4, Minsk 220030
D. V. Adamchuk
Belarus
Bobruiskaya str., 11, Minsk 220030
G. Abdurakhmanov
Uzbekistan
Universitetskaya str., 4, Tashkent 100174
References
1. Bell LE. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science. 2008;321:1457-1461. DOI: 10.1126/science.1158899
2. Di Salvo FJ. Thermoelectric cooling and power generation. Science. 1999;285:703-706. DOI: 10.1126/science.285.5428.703
3. Dmitriev AV, Zvyagin IP .Current trends in the physics of thermoelectric materials. Phys. Usp. 2010;53(8):789803. DOI: 10.3367/UFNe.0180.201008b.0821
4. Zevalkink A. [et al.]. A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Applied Physics Reviews. 2018;5(2):021303. DOI: 10.1063/1.5021094
5. Yamamoto K. [et al.]. Thermoelectricity near Anderson localization transitions. Physical Review B. 2017;96(15):155201. DOI: 10.1103/PHYSREVB.96.155201
6. Dresselhaus MS. [et al.]. New Directions for Low Dimensional Thermoelectric Materials. Advanced Materials. 2007;19(8):1043-1053. DOI: 10.1002/adma.200600527
7. Wang J. [et al.]. Low-Dimensional Nanomaterials for Thermoelectric Detection of Infrared and Terahertz Photons. In: Park CR (ed.) Advanced Thermoelectric Materials. Scrivener Publishing LLC; 2019:267-316.
8. Pennelli G, Dimaggio E, Masci A. Silicon Nanowires: A Breakthrough for Thermoelectric Applications. Materials. 2021;14(18):5305. DOI: 10.3390/ma14185305
9. Zheng Y. [et al.]. Defect engineering in thermoelectric materials: what have we learned? Chemical Society Reviews. 2021;50(16):9022-9054. DOI: 10.1039/D1CS00347J
10. Bux SK. [et al.]. Nanostructured Bulk Silicon as an Effective Thermoelectric Material. Adv. Funct. Mater. 2009;19(15):2445-2452. DOI: 10.1002/adfm.200900250
11. Ohita H. Thermoelectrics based on strontium titanate. Mater. Today 2007;10:44-49. DOI: 10.1016/S1369-7021(07)70244-4
12. Tritt TM, Subramanian MA. Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View. RS Bull. 2006;31:188-198. DOI: 10.1557/mrs2006.44
13. Dmitriev AV. High doping effect on the thermoelectric properties of p-type lead telluride. Journal of Applied Physics. 2018;123:165707. DOI: 10.1063/1.5025766
14. Feng Y. [et al.]. Metal oxides for thermoelectric power generation and beyond. Adv. Compos. Hybrid Mater. 2018;1(1):114-126. DOI: 10.1007/s42114-017-0011-4
15. Kim S. [et al.]. Transparent Amorphous Oxide Semiconductor as Excellent Thermoelectric Materials. Coatings. 2018;8(12):462. DOI: 10.3390/coatings8120462
16. Batzill M, Diebold U. The surface and materials science of tin oxide. Progress in Surface Science. 2005;79(2-4):47-154. DOI: 10.1016/j.progsurf.2005.09.002
17. Kílíç C, Zunger A. Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 2002;88(9):095501. DOI: 10.1103/PhysRevLett.88.095501
18. Ksenevich V. [et al.]. Weak Localization in Polycrystalline Tin Dioxide Films. Materials. 2020;13(23):5415. DOI: 10.3390/ma13235415
19. Miller S. [et al.]. SnO as a Potential Oxide Thermoelectric Candidate. J. Mater. Chem. C. 2017;5(34): 8854-8861. DOI: 10.1039/C7TC01623A
20. Vieira EMF. [et al.]. Highly sensitive thermoelectric touch sensor based on p-type SnOx thin film. Nanotechnology. 2019;30(43):5502. DOI: 10.1088/1361-6528/ab33dd
21. Kuwahara S. Synthesis of High-Density Bulk Tin Monoxide and Its Thermoelectric Properties. Materials Transactions. 2018;59(7):1022-1029. DOI: 10.2320/matertrans.E-M2018804
22. Kumar DA. [et al.]. Nanostructured Oxide (SnO2, FTO) Thin Films for Energy Harvesting: A Significant Increase in Thermoelectric Power at Low Temperature. Micromachines. 2024;15(2):188. DOI: 10.3390/mi15020188
23. Bagheri-Mohagheghi M-M, Shokooh-Saremi M. The electrical, optical, structural and thermoelectrical characterization of nand p-type cobalt-doped SnO2 transparent semiconducting films prepared by spray pyrolysis technique. Phys. B Condens. Matter. 2010;405(19):42054210. DOI: 10.1016/j.physb.2010.06.067
24. Moharrami F, Bagheri-Mohagheghi M-M, Azimi-Juybari H. Study of structural, electrical, optical, thermoelectric and photoconductive properties of S and Al codoped SnO2 semiconductor thin films prepared by spray pyrolysis. Thin Solid Film. 2012;520(21):6503-6509. DOI: 10.1016/j.tsf.2012.06.075
25. Ferreira M. [et al.]. SnO2 thin film oxides produced by rf sputtering for transparent thermoelectric devices. Mater. Today Proc. 2015;2(2):647-653. DOI: 10.1016/j.matpr.2015.05.090
26. Macario LR, Golabek A, Kleinke H, Leite ER. Thermoelectric properties of Sb-doped tin oxide by a one-step solid-state reaction. Ceramics International. 2022;48(3): 3585-3591. DOI: 10.1016/j.ceramint.2021.10.137
27. Walsh A, Watson GW. Influence of the anion on lone pair formation in Sn(II) monochalcogenides: A DFT study. Journal of Physical Chemistry B. 2005;109(40):18868-18875. DOI: 10.1021/jp051822r
28. Seeger K. Physics of Semiconductors M., Mir. 1977;615 p.
29. Adamchuck DV, Ksenevich VK, Gorbachuk NI, Shimanskij VI. Impedance spectroscopy of polycrystalline tin dioxide films. Devices and Methods of Measurements. 2016;7(3):312-321. (In Russ.) DOI: 10.21122/2220-9506-2016-7-3-84-89
30. Adamchuck DV, Ksenevich VK. Control of Electrical and Optical Parameters of Humidity Sensors Active Elements Based on Tin Oxides Films with Variable Composition. Devices and Methods of Measurements. 2019;10(2):138-150. (In Russ.) DOI: 10.21122/2220-9506-2019-10-2-138-150
31. Adamchuk DV. [et al.]. Nonstoichiometric tin oxide films: study by X-ray diffraction, Raman scattering and electron paramagnetic resonance. Lithuanian Journal of Physics. 2019;59(4):179-187. DOI: 10.3952/physics.v59i4.4138
32. Adamchuck DV, Ksenevich VK, Poklonski NA, Kavaleu AI. Features of water vapor adsorption and desorption on the surface of non-stoichiometric tin dioxide films. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fіzіka-matematychnykh navuk = Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics series. 2020;56(1):102-113. (in Russ.) DOI: 10.29235/1561-2430-2020-56-1-102-113
33. Ksenevich VK. [et al.]. Effect of the oxidative annealing temperature on the structural and optical characteristics of tin oxide films. Journal of Applied Spectroscopy. 2025;91(6):1233-1239. DOI: 10.1007/s10812-025-01842-z
34. Ksenevich V. [et al.]. Synthesis of amorphous and polycrystalline tin oxide films for applications as thermoelectric materials. Interaction of Radiation with Solids : Proceedings of the 15th International Сonference, Minsk, Belarus, September 26-29, 2023 / Belarusian State Univ.; ed.: V.V. Uglov (ed.-in-chief) [et al.]. Minsk, BSU. 2023;521-523 (In Russ.). https://elib.bsu.by/handle/123456789/304265
35. Boroojerdian P. Structural and Optical Study of SnO Nanoparticles Synthesized Using Microwave–Assisted Hydrothermal Route // International Journal of Nanoscience and Nanotechnology. 2013;9(2):95-100. https://www.ijnnonline.net/article_3824.html
36. Sangaletti L. [et al.] Oxidation of Sn thin films to SnO2. Micro-raman mapping and X-ray diffraction studies // Journal of Materials Research. 1998;13(9):24572460. DOI: 10.1557/JMR.1998.0343.
37. Eifert B. [et al.]. Raman studies of the intermediate tin-oxide phase. Physical Review Materials 2017;1:014602. DOI: 10.1103/PhysRevMaterials.1.014602
38. Jiang J. [et al.]. Transport mechanisms in SnO2: N, H thin film grown by chemical vapor deposition. Phys. Status Solidi B: Basic Research. 2017;254(7):1700003. DOI: 10.1002/pssb.201700003
39. Ji YC, Zhang HX, Zhang XH, Li ZQ. Structures, optical properties, and electrical transport processes of SnO2 films with oxygen deficiencies. Phys. Stat. Sol. (B). 2013;250(10):2145-2152. DOI: 10.1002/pssb.201349086
40. Samson S, Fonstad CG. Defect structure and electronic donor levels in stannic oxide crystals. J. Appl. Phys. 1973;44(10):4618-4621. DOI: 10.1063/1.1662011
41. Serhiienko I. [et al.]. Record-High Thermoelectric Performance in Al-Doped ZnO via Anderson Localization of Band Edge States. Adv. Sci. 2024;11:2309291. DOI: 10.1002/advs.202309291
42. Novitskii A. [et al.]. Defect Engineering of Bi2SeO2 Thermoelectrics. Adv. Funct. Mater. 2025;35:2416509. DOI: 10.1002/adfm.202416509
Review
For citations:
Ksenevich V.K., Dorosinets V.A., Samarina M.A., Poklonski N.A., Svito I.A., Adamchuk D.V., Abdurakhmanov G. Disordered Tin Oxide Films for Thermoelectric Applications: Correlation between Microstructure, Electrical Conductivity and Seebeck Coefficient. Devices and Methods of Measurements. 2025;16(2):87-97. https://doi.org/10.21122/2220-9506-2025-16-2-87-97