Preview

Devices and Methods of Measurements

Advanced search

Magnetic Circular Dichroism of Oxide Films: Study of Electronic, Magnetic and Charge States

https://doi.org/10.21122/2220-9506-2024-15-3-240-247

Abstract

Semiconductor materials based on ZnO and RE3+MnO3 oxides are considered as potential candidates for spintronics. This article presents the methodology and results of studying the effect of magnetic circular dichroism for Zn1-xCoxO, Zn1-x-yCoxAlyO and RE1-x 3+Ax 2+MnO3 film structures in the visible radiation range. It has been shown that the magnetic circular dichroism behavior of the manganite films reflects not only the magnetic, but also the charge component of the material. This indicates the possibility of studying the magnetic and transport characteristics of the films using the magnetic circular dichroism spectroscopy. Since the magnetic circular dichroism effect also directly probes the ground and excited electronic states of the film, it has been obtained data that update calculated parameters for describing the manganites band structure. In the case of the Zn1-xCoxO and Zn1-x-yCoxAlyO films, the magnetic circular dichroism spectroscopy acts as a tool for detecting Co nanoparticles in the solid solution matrix of ZnO:Co and ZnO:(Co+Al).

About the Authors

Yu. E. Samoshkina
Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch of Russian Academy of Sciences
Russian Federation

Address for correspondence:
Samoshkina Yu. –
Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences
Akademgorogok 50, bld. 38, Krasnoyarsk 660036, Russia
e-mail: uliag@iph.krasn.ru




A. V. Chernichenko
Moscow Technical University of Communication and Informatics
Russian Federation

Aviamotornaya str., 8a, Moscow 111024



References

1. Hirohata A, Yamada K, Nakatani Yo, Prejbeanu I-L, Diény B, Pirro Ph, Hillebrands B. Review on spintronics: Principles and device applications. J. Mag. Mag. Mater. 2020;509:166711. DOI: 10.1016/j.jmmm.2020.166711

2. Haghiri-Gosnet A-M, Renard J-P. CMR manganites: physics, thin films and devices. J. Phys. D Appl. Phys. 2003;36:R127-R150. DOI:10.1088/ 0022-3727/36/8/201

3. Ying M, Blythe HJ, Dizayee W, Heald SM, Gerriu FM, Fox AM, and Gehring GA. Advantageous use of metallic cobalt in the target for pulsed laser deposition of cobalt-doped ZnO films. Appl. Phys. Lett. 2016;109:072403. DOI: 10.1063/1.4961223

4. Ramirez AP. Colossal magnetoresistance. J. Phys. Condens. Matter. 1997;9:8171-8199. DOI: 10.1088/0953-8984/9/39/005

5. Salazar-Muñoz VE, Lobo Guerrero A, Palomares-Sánchez SA. Review of magnetocaloric properties in lanthanum manganites. J. Magn. Magn. Mater. 2022;562:169787. DOI: 10.1016/j.jmmm.2022.169787

6. Jung JH, Kim KH, Eom DJ, Noh TW, Cho EJ, Yu Jaejun, Kwon YS, Chung Y. Determination of electronic band structures of CaMnO3 and LaMnO3 using optical-conductivity analyses. Phys. Rev. B. 1997;55:15489. DOI: 10.1103/physrevb.55.15489

7. Yamaguchi S, Okimoto Y, Ishibashi K, Tokura Y. Magneto-optical Kerr effects in perovskite-type transition-metal oxides: La1-xSrxMnO3 and La1-xSrxCoO3. Phys. Rev. B. 1998;58(11):6862-6870. DOI: 10.1103/PhysRevB.58.6862

8. Liu HL, Lu KS, Kuo MX, Uba L, Uba S, Wang LM, Jeng H-T. Magnetooptical properties of La0.7Sr0.3MnO3 thin films with perpendicular magnetic anisotropy. J. Appl. Phys. 2006;99:043908. DOI: 10.1063/1.2173681

9. Veis M, Visnovský S, Lecoeur Ph, Haghiri-Gosnet A-M, Renard J-P, Beauvillain P, Prellier W, Mercey B, Mistrık J, Yamaguchi T. Magneto-optic spectroscopy of La2/3Sr1/3MnO3 films on SrTiO3 (100) and (110) substrates. J. Phys. D Appl. Phys. 2009;42:195002. DOI: 10.1088/0022-3727/42/19/195002

10. Zahradník M, Maroutian Th, Zelený M, Horák L, Kurij G, Malecek T, Beran L, Višnovský Š, Agnus G, Lecoeur Ph, and Veis M, Electronic structure of La2/3Sr1/3MnO3: Interplay of oxygen octahedral rotations and epitaxial strain. Phys. Rev. B. 2019;99:195138. DOI: 10.1103/PhysRevB.99.195138

11. Varvaro G, Trolio AD, Polimeni A, Gabbani A, Pineider F, de J. Fernaґndez C, Barucca G, Mengucci P, Bonapasta AA and Testa AM. Giant magneto-optical response in H+ irradiated Zn1-xCoxO thin films. J. Mater. Chem. C. 2019;7:78-85. DOI: 10.1039/C8TC03563F

12. Cho YC, Kim S-J, Lee S, Kim SJ, Cho CR, Nahm H-H, Park CH, Jeong IK, Park S, Hong TE, Kuroda S, Jeong S-Y. Reversible ferromagnetic spin ordering governed by hydrogen in Co-doped ZnO semiconductor. Appl. Phys. Lett. 2009;95:172514. DOI: 10.1063/1.3257733

13. Samoshkina YuE, Edelman IS, Rautskii MV, Molokeev MS. Correlation between magneto-optical and transport properties of Sr doped manganite films. J. Alloys Compd. 2019;782:334. DOI: 10.1016/j.jallcom.2018.12.158

14. Granovskii AB, Sukhorukov YP, Telegin AV, Bessonov VD, Gan’shina EA, Kaul’ AR, Korsakov IE, Gorbenko OYu, and Gonzalez J. Giant magnetorefractive effect in La0.7Ca0.3MnO3 films. J. Exp. Theor. Phys. 2011;112:77. DOI: 10.1134/S106377611005105X

15. Samoshkina YuE, Edelman IS, Chou H, Lin HCh, Dwivedi GD, Petrov DA, Zharkov SM, Zeer GM, Molokeev MS. Structure and physical properties of hydrogenated (Co+Al)-doped ZnO films: Comparative study with Co-doped ZnO films. Mater. Sci. Eng., B. 2021;264:114943. DOI: 10.1016/j.mseb.2020.114943

16. Scott GB, Lacklison DE, Ralph HI, and Page JL. Magnetic circular dichroism and Faraday rotation spectra of Y3Fe5O12. Phys. Rev. B. 1975;12(7):2562-2571. DOI: 10.1103/PhysRevB.12.2562

17. Samoshkina Yu, Edelman I, Chou H, Petrov D, Zharkov S, Neznakhin D, Stepanova E, Stepanov A. Magnetic circular dichroism of Co nanoparticles localized in matrices of various types. Materialia 2023;28:101759. DOI: 10.1016/j.mtla.2023.101759

18. Samoshkina Yu, Rautskii M, Neznakhin D, Stepanova E, Edelman I, Chou H. Particles-matrix bond in ZnCoO:H and ZnCoAlO:H films: issues of magnetism and spin injection. Materials 2023;16:3659. DOI: 10.3390/ma16103659

19. Burkova LV, Chzhan AV, Sokolov AE, Kosyrev NN, Patrin GS, Tabakaeva KV. Magneto-optical and optical properties of polycrystalline Cо-P films with nanometer thickness. Bull. Russ. Acad. Sci. Phys. 2016;80(11):1314- 1316. DOI: 10.3103/S1062873816110162

20. Coey JMD, Viret M, von Molnar S. Mixed-valence manganites. Adv. Phys. 1999;48:167e293. DOI: 10.1080/000187399243455.

21. Brik MG, Srivastava AM. On the optical properties of the Mn4+ ion in solids. J. Lumin. 2013;133:69-72. DOI: 10.1016/j.jlumin.2011.08.047

22. Czaja M, Lisiecki R, Chrobak A, Sitko R, Mazurak Z. The absorption- and luminescence spectra of Mn3+ in beryl and vesuvianite. Phys Chem Minerals. 2018;45: 475-488. DOI: 10.1007/s00269-017-0934-x

23. Kaplan SG, Quijada M, Drew HD, Tanner DB, Xiong GC, Ramesh R, Kwon C, Venkatesan T. Optical evidence for the dynamic Jahn-Teller effect in Nd0.7Sr0.3MnO3. Phys. Rev. Lett. 1996;77(10):2081-2084. DOI: 10.1103/PhysRevLett.77.2081

24. Okimoto Y, Katsufuji T, Ishikawa T, Arima T, Tokura Y. Variation of electronic structure in La1-xSrxMnO3 (0<x<0.3) as investigated by optical conductivity spectra. Phys. Rev. B. 1997;55(7):4206-4214. DOI: 10.1103/PhysRevB.55.4206

25. Moritomo Y, Machida A, Matsuda K, Ichida M, Nakamura A. Magnetization dependent behaviors of interband transitions between the exchange-split bands in doped manganite films. Phys. Rev. B. 1997;56(9):5088- 5091. DOI: 10.1103/PhysRevB.56.5088


Review

For citations:


Samoshkina Yu.E., Chernichenko A.V. Magnetic Circular Dichroism of Oxide Films: Study of Electronic, Magnetic and Charge States. Devices and Methods of Measurements. 2024;15(3):240-247. (In Russ.) https://doi.org/10.21122/2220-9506-2024-15-3-240-247

Views: 160


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)