Preview

Devices and Methods of Measurements

Advanced search

The Peculiarities of Acoustic Normal Waves Propagation in Thin Porous Sheets of Thermally Expanded Graphite

https://doi.org/10.21122/2220-9506-2024-15-3-213-220

Abstract

Thermally expanded graphite belongs to a new class of graphite materials with unique physical, chemical and mechanical properties. Acoustic wave velocity is one of the most important characteristics for study of porous materials including thin porous sheets of thermally expanded graphite. In this paper peculiarities of symmetric mode S0 Lamb wave propagation and SH-wave with horizontal polarization in sheets of thermally expanded graphite are experimentally investigated. To determine their velocities a differential measurement scheme on the base of a low-frequency acoustic flaw detector DIO1000 LF and specialized piezoelectric transducers with dry point contact was used. Additionally the longitudinal wave velocity in direction of sheet thickness was determined using piezoelectric transducers based on polyvinylidene fluoride. Indicatrices of normal wave velocities in the rolling plane were plotted and it was shown that the maximum acoustic anisotropy is characteristic for the S0-mode. The velocity minimum corresponds to the longitudinal direction of the rolling plane in which the maximum elongation of gas pores was observed. Influence of thickness and density of thermally expanded graphite sheets on the velocities of normal waves was investigated and presence of the thickness range where the minimum velocity values were observed due to the maximum inhomogeneity of layers formed in the rolling process. Method for determination of dynamic elastic moduli of porous thermally expanded graphite sheets using experimentally measured velocities of normal waves was proposed. It was shown that in the longitudinal direction of the rolling plane the Poisson's ratio took negative values which allow to attribute the specified material to auxetics ones.

About the Authors

O. V. Muravieva
Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences
Russian Federation

Address for correspondence:
Muravieva.O.V. –
Kalashnikov Izhevsk State Technical University,
Studencheskaya str., 7, Izhevsk 426069, Udmurt Republic, Russia
e-mail: pmkk@istu.ru



A. V. Blinova
Kalashnikov Izhevsk State Technical University
Russian Federation

Studencheskaya str., 7, Izhevsk 426069



L. A. Denisov
Kalashnikov Izhevsk State Technical University
Russian Federation

Studencheskaya str., 7, Izhevsk 426069



O. P. Bogdan
Kalashnikov Izhevsk State Technical University
Russian Federation

Studencheskaya str., 7, Izhevsk 426069



References

1. Isaev OYu, Smirnov DV, Lepikhin VP, Belova MYu, Kolesova SM. Technology and the hardware solution of a process of manufacture of thickening materials from thermal expanded graphite. Konstruktsii iz kompozitsionnykh materialov. 2006;4:76-79. (In Russ.).

2. Yakovlev AV, Finaenov AI, Zabud'kov SL, Yakovleva EV. Thermally expanded graphite: Synthesis, properties, and prospects for use. Russian Journal of Applied Chemistry. 2006;79(11):1741-1751. DOI: 10.1134/S1070427206110012

3. Hanov AM, Makarova LE, Degtyarev AI, Karavaev DM, Moskalev VA, Nesterov AA, Smirnov DV, Isaev OYu. Structural and applications peculiarities of the expanded graphite. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2012;14(1):92-106. (In Russ.).

4. Murugan P, Nagarajan RD, Shetty BH, Govindasamy M, Sundramoorthy AK. Recent trends in the applications of thermally expanded graphite for energy storage and sensors – a review. Nanoscale Advances. 2021;3: 6294-6309.

5. Karavaev DM, Khanov AM, Matygullina EV, Sirotenko LD. Vliyanie strukturno-morfologicheskikh osobennostei termorasshirennogo grafita na iznosostoikost' kompozitsionnogo materiala s kremniiorganicheskim svyazuyushchim. Izvestiya Samarskogo nauchnogo Tsentra Rossiiskoi akademii nauk. 2013;15(4):378–381. (In Russ.).

6. Afanasov IM, Savchenko DV, Ionov SG, Rusakov DA, Seleznev AN, Avdeev VV. Thermal conductivity and mechanical properties of expanded graphite. Inorganic Materials. 2009;45(5):486-490. (In Russ.). DOI: 10.1134/S0020168509050057

7. Bogdan OP, Muraveva OV, Blinova AV, Zlobin DV. Density study of thermoexpanded graphite samples by acoustic amplitude-shadow method. Russian Journal of Nondestructive Testing. 2023;8:21-31. (In Russ.). DOI: 10.31857/S0130308223080031

8. Bogdan OP, Blinova AV, Denisov LA. Experimental Evaluation of the Possibility of Through Defects Detection in Thermally Expanded Graphite Workpieces by Acoustic Method. Vestnik IzhGTU imeni M. T. Kalashnikova. 2024;27(2):97-105. (In Russ.). DOI: 10.22213/2413-1172-2024-1-97-105

9. Makalkin DI, Karabutov AA, Savateeva EV, Simonova VA. Measurement of local modules of elasticity of construction materials using laser ultrasonic sources. Doklady Physics. 2022;502(1):63-66. (In Russ.). DOI: 10.31857/S2686740022010126

10. Shibaev IA. Determination of the dynamic elastic modulus of rock samples using various methods of laser ultrasound diagnostics. MIAB. Mining Informational and Analytical Bulletin. 2021;4-1:138-147. (In Russ.). DOI: 10.25018/0236_1493_2021_41_0_138

11. Murav'eva O, Murav'ev V, Volkova L, Kazantseva N, Nichipuruk A, Stashkov A. Acoustic properties of low-carbon 2% Mn-doped steel manufactured by laser powder bed fusion technology. Additive Manufacturing. 2022;51:102635. DOI: 10.1016/j.addma.2022.102635

12. Murav'eva OV, Murav'ev VV, Volkova LV, Vladykin AL, Belosludtsev KYu. Acoustic properties of 15-5 PH maraging steel after energy deposition. Frontier Materials & Technologies. 2024;(2):87-100. (In Russ.). DOI: 10.18323/2782-4039-2024-2-68-8

13. Murav'ev VV, Murav'eva OV, Vladykin AL. Acoustic and Electromagnetic Properties of Maraging Iron–Chromium–Nickel Alloy with Addition of Copper in Mechanical Tension. Russian Journal of Nondestructive Testing. 2023;59(5):515-523. DOI: 10.1134/s1061830923700365

14. Murav'ev VV, Khomutov AS, Murav'eva OV, Stepanova EA, Popova VD. Formation of Residual Stresses in the Cylinders of Deep-Rod Pumps after Manufacturing Operations. Vestnik IzhGTU imeni M. T. Kalashnikova. 2024;27(2):87-96. (In Russ.). DOI: 10.22213/2413-1172-2024-2-87-96

15. Uglov AL, Khlybov AA, Bychkov AL, Kuvshinov MO. About non-destructive control of residual stresses in axisymmetric parts made of steel 03ni17co10w10moti. Vestnik IzhGTU imeni M. T. Kalashnikova. 2019;22(4):3-9. (In Russ.). DOI: 10.22213/2413-1172-2019-4-3-9

16. Murav'ev VV, Budrin AYu, Sintsov MA. Influence of High-Cycle Fatigue on the Speed of Shear and Rayleigh Waves in Steel Bars of Different Heat Treatment. Intellektual'nye sistemy v proizvodstve. 2020;18(4): 4-10. (In Russ.). DOI: 10.22213/2410-9304-2020-4-10

17. Mishakin VV, Gonchar AV, Kurashkin KV, Klyushnikov VA, Kachanov M. On low-cycle fatigue of austenitic steel. Part I: Changes of Poisson's ratio and elastic anisotropy. International Journal of Engineering Science. 2021;168:103567. DOI: 10.1016/j.ijengsci.2021.103567

18. Khlybov AA, Kabaldin YuG, Ryabov DA, Anosov MS, Shatagin DA. Study of the damage to 12cr18ni10ti steel samples under low cycle fatigue using methods of nondestructive control. Industrial Laboratory. 2021;87(5):61-67. (In Russ.). DOI: 10.26896/1028-6861-2021-87-5-61-67

19. Ababkov NV, Danilov VI, Smirnov AN, Popova NA, Pimonov MV. Study of dislocation structure, internal stresses and redistribution of carbon atoms in the zone of localized deformation in structural steel 20. Fundamentalʹnye problemy sovremennogo materialovedenia. 2024;21(1):112-121. (In Russ.). DOI: 10.25712/ASTU.1811-1416.2024.01.013

20. Britenkov AK, Rodyushkin VM, Ilyakhinskii AV. Acoustic sensing study of the physical and mechanical properties of titanium alloy ti-6al-4v, made by selective laser melting. Materials physics and mechanics. 2021;47(1):139-158. (In Russ.). DOI: 10.18720/MPM.4712021_14

21. Murav'ev VV, Budrin AYu, Sintsov MA. Structuroscopy of Heat-Treated Steel Bars by the Speed of Propagation of Rayleigh Waves. Intellektual'nye sistemy v proizvodstve. 2020;18(2):37-43. (In Russ.). DOI: 10.22213/2410-9304-2020-2-37-43

22. Baev A, Asadchaya M, Mayorov А, Sergeeva О, Delenkovsky N. Possibilities of using of surface and subsurface waves’ amplitude-angle characteristics for control of materials with surface-hardened inhomogeneous layer. Devices and Methods of Measurements.2022;13(4):263-275. DOI: 10.21122/2220-9506-2022-13-4-263-275

23. Murav'ev VV, Gushchina LV. Structuroscopy of Coils after High-Temperature Mechanical Treatment on the Basis of Measurements of Rayleigh Waves Velocity. Devices and Methods of Measurements. 2022;13(2):147(In Russ.). DOI: 10.21122/2220-9506-2022-13-2-147-154

24. Murav'ev VV, Murav'eva OV, Vagapov TR, Makarova VE, Stepanova EA. Acoustic and Electromagnetic Properties of Civilian Gun Blanks. Intellektual'nye sistemy v proizvodstve. 2023;21(1):59-70. (In Russ.). DOI: 10.22213/2410-9304-2023-1-59-70

25. Biot MA. Acoustics, elasiticity, and thermodynamics of porous media: twenty-one papers. New York: Acoustical Society of America. 1992:265.

26. Knyaz'kov NN, Sharfarets BP. Acoustics of porous-elastic fluid saturated medium (an overview of the biot theory). Nauchnoe priborostroenie. 2016;26(1):77–84.

27. Kidner M, Hansen C. A compARison and review of theories of the acoustics of porous materials. International Journal of Acoustics and Vibrations. 2008;13:1-27.

28. Jimenez N, Umnova O, Groby J-P. Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media: From Fundamentals to Industrial Applications. Topics in Applied Physics. Springer. 2021:444. DOI: 10.1007/978-3-030-84300-7

29. Omella AJ, Alvarez-Aramberri J, Strugaru M, et al. A simulation method for the computation of the effective P-wave velocity in heterogeneous rocks. Computational Mechanics. 2021;67:845-865. DOI: 10.1007/s00466-020-01966-3

30. Ba A, Kovalenko A, Aristégui C, Mondain-Monval O, Brunet T. Thomas Brunet Soft porous silicone rubbers with ultra-low sound speeds in acoustic metamaterials. Scientific Reports. 2017;7:40106. DOI: 10.1038/srep40106

31. Magliacano D, Ouisse M, Khelif A, Rosa SD, Franco F, Atalla N, Collet M. Computation of dispersion diagrams for periodic porous materials modeled as equivalent fluids. Mechanical Systems and Signal Processing. 2020;142:106749. DOI: 106749. 10.1016/j.ymssp.2019.05.040

32. Dmitriev VL, Khusainov IG, Gimaltdinov IK. Propagation of Acoustic Waves in a Water-Saturated Porous Medium Formed by a Gas Hydrate. Journal of Engineering Physics and Thermophysics. 2021;94(6):15631570. DOI: 10.1007/s10891-021-02437-z

33. Sokolovskaya YG, Podymova NB, Karabutov AA. Using Broadband Acoustic Spectroscopy with a Laser Source of Ultrasound to Study the Frequency Dependences of the Phase Velocity of Longitudinal Acoustic Waves in Porous Carbon Fiber Reinforced Plastic Composites. Bulletin of the Russian Academy of Sciences: Physics. 2021;85(1):93-97. DOI: 10.3103/S1062873821010251

34. Fedotovskii VS. Poristaya sreda kak akusticheskii metamaterial s otritsatel'nymi inertsionnymi i uprugimi svoistvami. Acoustical Physics. 2018;64(5):547-553. (In Russ.). DOI: 10.1134/S0320791918050027

35. Bobrovnitskii YI. An acoustic metamaterial with unusual wave properties. Acoustical Physics. 2014;60(4):347. (In Russ.). DOI: 10.7868/S0320791914040017

36. Sitdikova LF. Acoustic waves in porous media saturated with water with gas bubbles on the pore walls. Petroleum engineering. 2020;18(5):36-42. (In Russ.). DOI: 10.17122/ngdelo-2020-5-36-42

37. Groby J-P, Huang W, Lardeau A, Auregan Y. The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics. 2015;117(12). DOI: 10.1063/1.4915115

38. Guo J, Chen C, Cai G, et al. Exploring Acoustic Wave Propagation and Equivalent Path in Quasi-Porous Medium of Loose Coal Mass. Natural Resources Research. 2024;33:389-403. DOI: 10.1007/s11053-023-10297-y

39. Gubaidullin AA, Boldyreva OYu, Dudko DN. Velocity and attenuation of linear waves in porous media saturated with gas and its hydrate. Journal of Applied Mechanics and Technical Physics. 2022;63(4):599-605. (In Russ.). DOI: 10.1134/s002189442204006x

40. Sekoyan SS, Shlegel' VR, Batsanov SS [et al.]. Effect of the porosity and particle size of materials on sound-wave velocity. Journal of Applied Mechanics and Technical Physics. 2009;50(4):646-650. (In Russ.). DOI: 10.1007/s10808-009-0086-y

41. Dai Z, Liu J, Geng H, et al. The influence of slip boundary effect on the propagation of shear horizontal guided waves in a fluid-saturated porous medium. Journal of Engineering Mathematics. 2024;144(15). DOI: 10.1007/s10665-023-10318-y

42. Rose J.L. Ultrasonic guided waves in solid media. Cambridge; New York: Cambridge University Press. 2014:530.

43. Drachev KA, Rimlyand VI, Syasina TV. Measurement of sound velocity and damping coefficient in composite materials based on polymer binders with different degrees of reinforcement. Vestnik Tikhookeanskogo gosudarstvennogo universiteta. 2020;4(59):47-54.

44. Wilkinson SJ, Reynolds WN. The propagation of ultrasonic waves in carbon-fibre-reinforced plastics. Journal of Physics D: Applied Physics. 2002;7:50. DOI: 10.1088/0022-3727/7/1/313

45. Brekhovskikh LM. Volny v sloistykh sredakh 2-e izd. Dopolnennoe i pererabotannoe. M.: Nauka. 1973;340.

46. Karavayev DM, Khanov AM, Degtyarev AI, Makarova LE, Smirnov DV, Isaev OYu. Mechanical properties anisotropy of composite material based on thermoexpanded graphite. News of the samara centre of science of the Russian academy of sciences. 2012;14(4): 1243-1245.


Review

For citations:


Muravieva O.V., Blinova A.V., Denisov L.A., Bogdan O.P. The Peculiarities of Acoustic Normal Waves Propagation in Thin Porous Sheets of Thermally Expanded Graphite. Devices and Methods of Measurements. 2024;15(3):213-230. (In Russ.) https://doi.org/10.21122/2220-9506-2024-15-3-213-220

Views: 165


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)