Preview

Devices and Methods of Measurements

Advanced search

Arbitrary Waveform Voltage Measuring Converter for Wideband AC Voltmeter

https://doi.org/10.21122/2220-9506-2024-15-3-174-185

Abstract

Alternating current (AС) voltage measurement is one of the most common types of measurements in various fields of science and technology. To evaluate the AC voltage level, special voltmeters are used which allow recording of amplitude, average and/or root mean square (RMS) voltage values. Among these measuring instruments, voltmeters of mean square voltage are especially significant because RMS is a fundamental physical characteristic of an electrical signal and is a true measure of power. The wide distribution of non-sinusoidal signals necessitates the creation of voltmeters for direct measurement of RMS. The main component of such voltmeter is an AC voltage to direct current (DC) voltage measuring converter based on the root-mean-square value level (AC RMS-DC converter). An analysis of existing technical solutions shows that it is advisable to use a thermoelectric converter (TEC) for high-precision measurement of RMS voltage of an arbitrary shape with a spectrum in the frequency band from 20 Hz to 20–50 MHz. Such a AC RMS-DC converter must contain a differential semiconductor TEC and an input broadband voltage amplifier with low nonlinearity of the frequency response. The aim of the paper was to develop a measuring AC RMS-DC converter of arbitrary shape voltage in which special attention is paid to modernization of the TEC and reduction of the AC RMS-DC converter error using corection of the frequency response of the input amplifier and introduction automatic calibration of the output voltage. Features of semiconductor chips and design of TEC in the form of a microcircuit or microassembly, results of converter’s and TEC elements’ parameters measurements are presented. A significant influence of the frequency response of the input amplifier and the offset voltage of the TEC transistors on the AC RMS-DC converter error was noted. Modernization of the input amplifier and introduction of automatic calibration of the output voltage ensured an error in a sinusoidal signal converting of less than 1 % in the range from 20 Hz to 50 MHz.

About the Authors

O. V. Dvornikov
Minsk Research Instrument-Making Institute
Belarus

Address for correspondence:
Dvornikov O.V. –
Minsk Research Instrument-Making Institut,
Ya. Kolas str., 73, Minsk 220113, Belarus

e-mail: oleg_dvornikov@tut.by



U. N. Bakhur
Minsk Research Instrument-Making Institute
Belarus

Ya. Kolas str., 73, Minsk 220113



A. G. Bakhir
Minsk Research Instrument-Making Institute
Belarus

Ya. Kolas str., 73, Minsk 220113



U. M. Lazouski
Minsk Research Instrument-Making Institute
Belarus

Ya. Kolas str., 73, Minsk 220113



V. A. Tchekhovski
Institute for Nuclear Problems of Belarusian State University
Belarus

Bobruiskaya str., 11, Minsk 220006



References

1. Nefedov VI, Sigov AS, Bityukov VK, Khakhin VI. Metrology and radio measurements. Moscow, Vysshaya shkola. 2006. 526 p.

2. Aminev AV, Blokhin AV. Measurements in Telecommunication Systems: A Textbook for Universities. Moscow, Izdatel'stvo Yurayt. 2024. 223 p.

3. Dvornikov OV. Microelectronic converters of alternating voltage to direct voltage by the level of rootmean-square value. Part 2. Components and technologies. 2005;(1):34-39. (In Russ.).

4. Dvornikov OV. Microelectronic converters of alternating voltage to direct voltage by the level of rootmean-square value. Part 1. Components and technologies. 2004;(9):62-69. (In Russ.).

5. Dvornikov OV. Microelectronic converters of alternating voltage to direct voltage by the lev-el of rootmean-square value. Part 3. Components and technologies. 2005;(2):84-93. (In Russ.).

6. Klonz M. Current developments in accurate ACDC transfer measurements. Proceedings of Conference on Precision Electromagnetic Measurements Digest, Boulder, CO, USA, 1994;358. DOI: 10.1109/CPEM.1994.333360

7. Stott HL. A Multirange Standard for AC/DC Difference Measurements. IEEE Transactions on Instrumentation and Measurement, 1986;IM-35(4):387-391. DOI: 10.1109/TIM.1986.6499103

8. Katzmann FL. Recent Improvements to an Automated Precision Wide-Band AC-DC Transfer Standard. IEEE Transactions on Instrumentation and Measurement, 1987;IM-36(2):312-319. DOI: 10.1109/TIM.1987.6312693

9. Nicolae DV, Golovins E. Characterization and modeling of an RMS-DC solid-state thermal converter. 2016 International Semiconductor Conference (CAS), 2016;113-116. DOI: 10.1109/SMICND.2016.7783055

10. Pogliano U, Trinchera B, Francone F. Reconfigurable Unit for Precise RMS Measurements. IEEE Transactions on Instrumentation and Measurement, 2009;58(4):827-831. DOI: 10.1109/TIM.2008.2007054

11. Martincorena-Arraiza M, De La Cruz Blas CA, Algueta-Miguel JM, López-Martín A. A 1.2 V CurrentMode RMS-to-DC Converter Based on a Novel TwoQuadrant Electronically Simulated MOS Translinear Loop. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 2020;1-1. DOI: 10.1109/ISCAS45731.2020.9180764

12. Sharifipoor O, Ahmadi A, Alirezaee S, Ahmadi M, Erfani S. True RMS-DC converter based on Differential Difference Current Conveyor. 2015 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 2015;1-4. DOI: 10.1109/ISSCS.2015.7203936

13. Galkin YAD, Dvornikov OV, Tchekhovski VА. Precision RMS-to-DC Converter. BSUIR Reports. 2024;22(1):30-38. (In Russ.). DOI: 10.35596/1729-7648-2024-22-1-30-38


Review

For citations:


Dvornikov O.V., Bakhur U.N., Bakhir A.G., Lazouski U.M., Tchekhovski V.A. Arbitrary Waveform Voltage Measuring Converter for Wideband AC Voltmeter. Devices and Methods of Measurements. 2024;15(3):174-185. (In Russ.) https://doi.org/10.21122/2220-9506-2024-15-3-174-185

Views: 214


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)