Preview

Gas-Sensitive Characteristics of Low-Power Semiconductor Gas Sensors to CO and H2

https://doi.org/10.21122/2220-9506-2024-15-1-18-29

Abstract

Strict requirements for determining of gases concentration in the working environment it is relevant to develop of semiconductor sensors which provide rapid response and safety of personnel in industrial and domestic premises. The aim of the work was to study gas-sensitive and dynamic characteristics of high-sensitive low-power sensors made on thin nanoporous substrates with gas-sensitive layers of semiconductor metal oxides. The low-power semiconductor gas sensor on the anodic alumina substrate has been developed. Sensors with gas-sensitive semiconductor metal oxide layers based on In2O3+Ga2O3, In2O3+SnO2 and SnO2+Pd deposited from aqueous solutions with subsequent firing on sensor information electrodes are manufactured. Studies of gas-sensitive characteristics have shown that sensors with SnO2 films with the addition of Pd nanoparticles have maximum sensitivity of about 85 % and high response rate to 10 ppm H2 at 410 °C. The maximum sensitivity of 250 % to 10 ppm CO at 220 °C was shown by films based on In2O3+SnO2, the response time τ90 was 5 s, while the sensitivity of In2O3+Ga2O3 and SnO2+Pd was 30–50 % at 410–420 ºC. Semiconducting metal oxides In2O3+Ga2O3 (70 % at 420 °C) and In2O3+SnO2 (30 % at 250 °C) showed lower sensitivity to hydrogen, with response time τ90 = 20 s. The sensors power consumption in all measurements was 28–60 mW. Semiconductor gas sensors with low energy consumption can be used in the systems development that monitor the carbon monoxide concentration in the work area, as well as detect ignition's early stages.

About the Authors

I. A. Taratyn
Belarusian National Technical University; Minsk Research Institute of Radiomaterials
Belarus

Nezavisimosty Ave., 65, Minsk 220013; 
Lieutenant Kizhevatov str., 86-2, Minsk 220024

 



O. G. Reutskaya
Belarusian National Technical University; Minsk Research Institute of Radiomaterials
Belarus

Адрес для переписки:
Реутская О.Г.
Белорусский национальный технический университет,
пр-т Независимости, 65, г. Минск 220013, Беларусь

e-mail: oreutskaya@gmail.com



G. G. Gorokh
Belarusian State University of Informatics and Radioelectronics
Belarus

Brovki str., 6, Minsk 220013



I. V. Serdyuk
“Avangard” JSC
Russian Federation

Kondratievsky Ave., 72, St. Petersburg 195271



V. S. Fedosenko
Belarusian State University of Informatics and Radioelectronics
Belarus

Brovki str., 6, Minsk 220013



References

1. Linlin Wang, Jun Gao, Baofeng Wu, Kan Kan, Shuang Xu, Yu Xie, Li Li, Keying Shi Designed synthesis of In2O3 Beads@TiO2-In2O3 composite nanofibers for high performance NO2 sensor at room temperature. ACS Appl. Mater. Interfaces.2015;7:27152-27159. DOI: 10.1021/acsami.5b09496

2. Zhang H, Feng J, Fei T, Liu S, Zhang T. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sensors and Actuators. B Chem. 2014;190:472-478. DOI: 10.1016/j.snb.2013.08.067

3. Park S, Sun GJ, Jin C, Kim HW, Lee S, Lee C. Synergistic effects of a combination of Cr2O3-functionalization and UV-irradiation techniques on the ethanol gas sensing performance of ZnO nanorod gas sensors. ACS Appl. Mater. Interfaces. 2016;8:2805- DOI: 10.1021/acsami.5b11485

4. Kim H-J, Le J-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chem. 2014;192:607-627. DOI: 10.1016/j.snb.2013.11.005

5. Védrine JC. Heterogeneous Catalysis on Metal Oxides. Catalysts. 2017;7:341. DOI: 10.3390/catal7110341

6. Liu XY, Wang A, Zhang T, Mou CY. Catalysis by gold: new insights into the support effect. Nano Today. 2013;8:403-416. DOI: 10.1016/j.nantod.2013.07.005

7. Comini E. Metal oxides nanowires chemical/gas sensors: recent advances. Materials Today Advances. 2020;7:100099. DOI: 10.1016/j.mtadv.2020.100099

8. Li G, Du K, Wang X, Qiu C, Xu J. Pd nanoparticles decorated SnO2 ultrathin nanosheets for highly sensitive H2 sensor: Experimental and theoretical studies 2024. International Journal of Hydrogen Energy. Part A. 2024;50:761-771. DOI: 10.1016/j.ijhydene.2023.06.263

9. Pineau NJ, Keller SD, Güntner AT, Pratsinis SE. Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors. Microchim Acta. 2020;187:1-9. DOI: 10.1007/s00604-0194080-7

10. Sivaperuman K, Thomas A, Thangavel R, Thirumalaisamy L, Palanivel S, Pitchaimuthu S, Ahsan N, Okada Y. Binary and ternary metal oxide semiconductor thin films for effective gas sensing applications: A comprehensive review and future prospects. Progress in Materials Science. 2024;142:101222. DOI: 10.1016/j.pmatsci.2023.101222

11. Meng X, Bi M, Xiao O, Gao W. Ultrasensitive gas sensor based on Pd/SnS2/SnO2 nanocomposites for rapid detection of H2, Sensors and Actuators B: Chemical. 2022;359:131612. DOI: 10.1016/j.snb.2022.131612

12. Jeong HM, Kim JH, Jeong SY, Kwak CH, Lee JH. Co3O4-SnO2 hollow heteronanostructures: facile control of gas selectivity by compositional tuning of sensing materials via galvanic replacement. ACS Appl. Mater. Interfaces. 2016;8:7877-7883. DOI: 10.1021/acsami.6b00216

13. Kumpika T, Kantarak E, Sroila W, Panthawan A, Sanmuangmoon P, Thongsuwan W, Singjai P. Fabrication and composition control of porous ZnO-TiO2 binary oxide thin films via a sparking method. Optik. 2017;133:114121. DOI: 10.3390/ma11050841

14. Arfaoui А. [et al.] nvestigations into the physical properties of SnO2/MoO3 and SnO2/WO3 bi-layered structures along with photocatalytic and antibacterial applications. Thin Solid Films. 2018;648:12-20. DOI: 10.1016/j.tsf.2018.01.002

15. Eshmakov R, Filatova D, Konstantinova E, Rumyantseva M. Effect of Manganese Distribution on Sensor Properties of SnO2/MnOx Nanocomposites. Nanomaterials. 2023;13:1437. DOI: 10.3390/nano13091437

16. Gorokh G, Belahurau Y, Zakhlebaeva A, Taratyn I, Khatko V. Ring gyroscope sensitive element based on nanoporous alumina. Aircr. Eng. Aerosp. Technol. 2018;90:43-50. DOI: 10.1108/AEAT-01-2015-0026

17. Ali HO. Review of porous anodic aluminium oxide (AAO) applications for sensors, MEMS and biomedical devices. Transactions of the IMF. The International Journal of Surface Engineering and Coatings. 2017;95:290296. DOI: 10.1080/00202967.2017.1358514

18. Han J, Cheng P, Wang H, Zhang C, Zhang J, Wang Y, Duan L, Ding G. MEMS-based Pt film temperature sensor on an alumina substrate. Materials Letters. 2014;125:224-226. DOI: 10.1016/j.matlet.2014.03.170

19. Gorokh GG, Zakhlebayeva AI, Belahurau YA, Khatko VV, Taratyn IA. Chemical gas sensors on the nanoporous anodic alumina substrate. J. Nano Microsyst. Technol. 2014;9:45-51. DOI: 10.1108/AEAT-01-2015-0026

20. Ghasemi-Varnamkhastia M, Lozano J. Electronic nose as an innovative measurement system for the quality assurance and control of bakery products: A review. Engineering in Agriculture, Environment and Food. 2017;9:365-374. DOI: 10.1016/j.eaef.2016.06.001

21. Gorokh G, Zakhlebayeva A, Lazavenka A, Sobolev N, Zhylinski V, Bogomazova N, Yarmolich M, Kalanda N. Functional Multicomponent Metal Oxide Films Based on Sr, Sn, Fe and Mo in the Anodic Alumina Matrices. Phys. Status Solidi. 2020;257:1900283. DOI: 10.1002/pssb.201900283

22. Korotcenkov G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials. 2020;7(10):1392. DOI: 10.3390/nano10071392

23. Zakhlebayeva A, Lazavenka A, Gorokh G. Multicomponent Sn–Mo–O-Containing Films Formed in Anodic Alumina Matrixes by Ionic Layer Deposition. Mater. Today Proc. 2021;37:4064-4070. DOI: 10.1016/j.matpr.2020.09.252

24. Tolstoy VP. Successive ionic layer deposition. The use in nanotechnology. Russian Chemical Reviews. 2006;2(75):161-175. DOI: 10.1070/RC2006v075n02ABEH001197

25. Gorokh G, Bogomazova N, Taleb A, Zhylinski V, Galkovsky T, Zakhlebayeva A, Lozovenko A, Iji M, Fedosenko V, Tolstoy V. Spatially Ordered Matrix of Nanostructured Tin–Tungsten Oxides Nanocomposites Formed by Ionic Layer Deposition for Gas Sensing. Sensors. 2021;21:4169. DOI: 10.3390/s21124169

26. Kim JH, Jeong HM, Na ChW, Yoon JW, Abdel-Hady F, Wazzan AA, Lee JH. Highly selective and sensitive xylene sensors using Cr2O3-ZnCr2O4 heteronanostructures prepared by galvanic replacement. Sensor. Actuator. B Chem. 2016;235:498-506. DOI: 10.1016/j.snb.2016.05.104

27. Santos А, Kumeria T, Losic D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends in Analytical Chemistry. 2013;44,:25-38. DOI: 10.1016/j.snb.2016.05.104

28. Mohd Ch SA, Hamidon MN, Mamat MS, Ertugrul M, Abdullah NH. A Hydrogen Gas Sensor Based on TiO2 Nanoparticles on Alumina Substrate. Sensors. 2018;18:2483. DOI: 10.3390/s18082483

29. Kumeria T, Santos A, Losic D. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications. Sensors. 2014;14:11878-11918. DOI: 10.3390/s140711878

30. Tsyntsaru N, Kavas B, Sort J, Urgen M, Celis J-P. Mechanical and frictional behavior of nano-porous anodized aluminum, Materials Chemistry and Physics. 2014;148:887-895. DOI: 10.1016/j.matchemphys.2014.08.066

31. Belahurau YA, Khatko VV, Gorokh GG, Zakhlebayeva AI, Reutskaya OG, Taratyn IA. Low-power gas sensor on nanostructured dielectric membrane. J. Nano Microsyst. Tech. 2015;6:34-42.

32. Gorokh G, Taratyn I, Fiadosenka U, Reutskaya O, Lozovenko A. Heater Topology Influence on the Functional Characteristics of Thin-Film Gas Sensors Made by MEMS-Silicon Technology. Chemosensors. 2023;11:443. DOI: 10.3390/chemosensors11080443

33. Gorokh G, Zakhlebayeva A, Taratyn I, Lozovenko A, Zhylinski V, Iji M, Fedosenko V, Taleb A. A Micropowered Chemoresistive Sensor Based on a Thin Alumina Nanoporous Membrane and SnxBikMoyOz Nanocomposite. Sensor. 2022;22:3640. DOI: 10.3390/s22103640

34. Kutukov P, Rumyantseva M, Krivetskiy V, Filatova D, Batuk M, Hadermann J, Khmelevsky N, Aksenenko A, Gaskov A. Influence of Monoand Bimetallic PtOx, PdOx, PtPdOx Clusters on CO Sensing by SnO2 Based Gas Sensors. Nanomaterials. 2018;8:917. DOI: 10.3390/nano8110917

35. Sui N, Zhang P, Zhou T, Zhang T. Selective ppb-level ozone gas sensor based on hierarchical branchlike In2O3 nanostructure. Sensors Actuators B Chem. 2021;336:129612. DOI: 10.1016/j.snb.2021.129612

36. Majhi SM, Navale S, Mirzaei A, Kim HW, Kim SS. Strategies to Boost Chemiresistive Sensing Performance of In2O3-based Gas Sensors: An Overview. Inorganic Chemistry Frontiers. 2023;10:3428-3467. DOI: 10.1039/D3QI00099K

37. Malik R, Tomer VK, Chaudhary V, Dahiya MS, Nehra SP, Duhan S, Kailasam K. A low temperature, highly sensitive and fast response toluene gas sensor based on In (III)-SnO2 loaded cubic mesoporous graphitic carbon nitride. Sensors Actuators B Chem. 2018;255:3564-3575. DOI: 10.1016/j.snb.2017.09.193

38. Cao J, Zhang N, Wang S, Zhang H. Electronic structure-dependent formaldehyde gas sensing perfor mance of the In2O3/Co3O4 core/shell hierarchical heterostructure sensors. Journal Colloid Interface Science. 2020;577:19-28. DOI: 10.1016/j.jcis.2020.05.028

39. Staerz A, Suzuki T, Weimar U, Barsan N. SnO2: The most important base material for semiconducting metal oxide-based materials. Tin Oxide Mater, Elsevier. 2020;345-377. DOI: 10.1016/B978-0-12-815924-8.00012-8

40. Masuda Y. Recent advances in SnO2 nanostructure-based gas sensors. Sensors Actuators B Chem. 2022;131876. DOI: 10.1016/j.snb.2022.131876

41. Cai Z, Park S. Synthesis of Pd nanoparticle-decorated SnO2 nanowires and determination of the optimum quantity of Pd nanoparticles for highly sensitive and selective hydrogen gas sensor. Sensors and Actuators B: Chemical. 2020;322:128651. DOI: 10.1016/j.snb.2020.128651

42. Yao Dong, Lingling Du, Yingnan Jiang, Yankai Wang, Jie Zhang, Xinyue Wang, Shuli Wei, Mengling Sun, Qing Lu, Guangchao Yin, In2O3-SnO2 HedgehogLike nanostructured heterojunction for acetone detection, Applied Surface Science. 2024;654:159543. DOI: 10.1016/j.apsusc.2024.159543

43. Yang S, Jiang C, Wei S-H. Gas Sensing in 2D Materials. Applied Physics Reviews. 2017;4:021304. DOI: 10.1063/1.4983310

44. Reutskaya OG, Pleskachevsky YM. Measurement of CO and NO2 gas concentration's by multisensor microsystem in the mode of pulse heating. Devices and Methods of Measurements. 2017;8(2):160-167. (In Russ.). DOI: 10.21122/2220-9506-2017-8-2-160-167

45. Bubnov YuZ. Analysis of thermal regimes of semiconductor sensors. Messenger HEE. Iinstrument making. 2010;53(4):38-41. (In Russ.).


Review

For citations:


Taratyn I.A., Reutskaya O.G., Gorokh G.G., Serdyuk I.V., Fedosenko V.S. Gas-Sensitive Characteristics of Low-Power Semiconductor Gas Sensors to CO and H2. Devices and Methods of Measurements. 2024;15(1):18-29. (In Russ.) https://doi.org/10.21122/2220-9506-2024-15-1-18-29

Views: 446


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)