Preview

Universal Digital Probe Electrometer for Testing Semiconductor Wafers

https://doi.org/10.21122/2220-9506-2023-14-3-161-172

Abstract

Non-contact electrical methods are widely used for research and control of semiconductor wafers. The methods are usually based on surface potential measurement (CPD) in combination with illumination and/or deposition of charges on the sample using a corona discharge, and are also based on the measurement of surface photo-emf. By photo-EMF (SPV) it is possible to determine the lifetime of minor charge carriers, their diffusion length and detect traces of heavy metals on the surface. In addition, using photo-EMF it is possible to determine the surface resistance of the plate, some parameters of the dielectric layer on the surface and barrier photo-EMF (JPV). Electrical performance results reflect the influence of near-surface characteristics on the final performance of devices. The aim of the work was to develop a universal digital probe electrometer that implements various non-contact electrical methods for analyzing semiconductor wafers, in which the change in operating modes and configuration, transmission of the received data, remote testing and calibration are carried out via digital local control channels. This paper describes a universal digital probe electrometer developed by the authors, which implements the above-described non-contact electrical methods for analyzing semiconductor wafers (CPD, SPV and JPV), in which the change in operating modes and configuration, transmission of the received data, remote testing and calibration are carried out via digital local control channels. Due to their high speed, electrical characterization methods are suitable for inspecting semiconductor wafers during production. The results of testing the developed probe electrometer in CPD, SPV and JPV modes are presented, which reflect the effectiveness of the proposed approaches.

About the Authors

A. L. Zharin
Belarusian National Technical University
Belarus

Nezavisimosty Ave., 65, Minsk 220013, Belarus



U. A. Mikitsevich
Belarusian National Technical University
Belarus

Nezavisimosty Ave., 65, Minsk 220013, Belarus



A. I. Svistun
Belarusian National Technical University
Belarus

Nezavisimosty Ave., 65, Minsk 220013, Belarus



K. U. Pantsialeyeu
Belarusian National Technical University
Belarus

Nezavisimosty Ave., 65, Minsk 220013, Belarus



References

1. Komin V.V. [et al.]. Status of Non‐contact Electrical Measurements. AIP Conference Proceedings, 2003, 683, 782. DOI: 10.1063/1.1622559

2. Shroeder D.K. Contactless surface charge semiconductor characterization. Materials Science and Engineering. – 2002. – № 91–92. – Pр. 196–210.

3. Kronik L., Shapira Y. Surface photovoltage phenomena: theory, experiment, and applications. Surface Science Reports. – 1999. – Vol. 37. – Pp. 1–206.

4. Воробей Р.И. Контроль дефектов структуры кремний-диэлектрик на основе анализа пространственного распределения потенциала по поверхности полупроводниковых пластин / Р.И. Воробей [и др.] // Приборы и методы измерений. – 2013. – № 2. – C. 67–72.

5. Пилипенко В.А. Характеризация электрофизических свойств границы раздела кремний-двуокись кремния с использованием методов зондовой электрометрии / В.А. Пилипенко [и др.] // Приборы и методы измерений. – 2017. – Т. 8, № 4. – С. 344–356. DOI: 10.21122/2220-9506-2017-8-4-24-31

6. Zharin A., Pantsialeyeu K., Svistun A., Tyavlovsky K. Determination the lifetime of minority charge carriers and iron impurity concentration in semiconductor structures with submicron layers. Euroasian Journal of Semiconductors Science and Engineering. – 2020. – Vol. 2. – No. 4. – Pp. 17–21.

7. Tyavlovsky A., Zharin A., Mikitsevich V., Vorobey R. Scanning photo stimulated electrometry for testing the uniformity of spatial distribution of semiconductor wafers parameters. Euroasian Journal of Semiconductors Science and Engineering. – 2020. – Vol. 2. – No. 4. – Pp. 47–51.

8. Pantsialeyeu K., Zharin A., Mikitsevich V., Gusev O. Semiconductor wafers testing based on electron work function of surface. Euroasian Journal of Semiconductors Science and Engineering. – 2020. – Vol. 2. – No. 5. – Pp. 11–14.

9. Жарин А.Л. Метод контактной разности потенциалов и его применение в трибологии. – Минск: Бестпринт. – 1996. – 235 с.

10. Пантелеев К.В., Микитевич В.А., Жарин А.Л. Построение измерителей контактной разности потенциалов / К.В. Пантелеев, В.А. Микитевич, А.Л. Жарин // Приборы и методы измерений. – 2016. – Т. 7. – № 1. – С. 7–15. DOI: 10.21122/2220-9506-2016-7-1-7-15

11. Микитевич В.А. Интеллектуальный сенсор для измерительных систем, работающих по схеме синусоидальное возбуждение–отклик / В.А. Микитевич [и др.] // Приборы и методы измерений. – 2023. – Т. 14. – № 1. – С. 18–26. DOI: 10.21122/2220-9506-2023-14-1-18-26

12. Пантелеев К.В. Цифровой измеритель контактной разности потенциалов / К.В. Пантелеев [и др.] // Приборы и методы измерений. – 2016. – Т. 7. – № 2. – С. 136–144. DOI: 10.21122/2220-9506-2016-7-2-136-144


Review

For citations:


Zharin A.L., Mikitsevich U.A., Svistun A.I., Pantsialeyeu K.U. Universal Digital Probe Electrometer for Testing Semiconductor Wafers. . 2023;14(3):161-172. (In Russ.) https://doi.org/10.21122/2220-9506-2023-14-3-161-172