Preview

Devices and Methods of Measurements

Advanced search

TECHNIQUE OF ESTIMATE OF CONDUCTIVITY OF SMALL COAL SAMPLES BY THEIR INFLUENCE ON SIGNAL OF SPIN-LABEL IN RESONATOR OF ESR SPECTROMETER

Abstract

The results of study at room temperature in the air of influences of the nonresonant absorption of microwave electromagnetic radiation by coal samples of different masses in the center of H102-resonator on the electron spin resonance (ESR) signal of a standard sample (spin label) of a ruby crystal, permanently mounted on the side wall of the resonator, are presented. Quantitative evaluation of the microwave conductivity of the studied coal samples based on the ESR measurements of ruby are made. Results can be applied for monitoring of electrical parameters of coals in the microwave range.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus


S. A. Vyrko
Belarusian State University
Belarus


O. N. Poklonskaya
Belarusian State University
Belarus


N. I. Gorbachuk
Belarusian State University
Belarus


A. I. Siahlo
Belarusian State University
Belarus


References

1. Ettinger I.L. Neob’yatnye zapasy i nepredskazuemye katastrofy: (Tverdye rastvory v nedrah Zemli) [Immense reserves and unpredictable catastrophes: (solid solutions in the bowels of the Earth)]. Moscow, Nauka Publ., 1988. 175 p.

2. Gorbaty M.L. Prominent frontiers of coal science: past, present and future. Fuel, 1994, vol. 73, no. 12, pp. 1819–1828.

3. Frolkov G.D., Frolkov A.G. Correlation between the sudden and regular releases of coal-bed methane and the structures of the organic matter of natural coals. Solid Fuel Chemistry, 2011, vol. 45, no. 1, pp. 9–13.

4. Buchachenko A.L. Magnetoplasticity and the physics of earthquakes. Can a catastrophe be prevented? Phys. Usp. 2014, vol. 57, no. 1, 92–98.

5. Novgorodova M.I., Gufan Yu.M., Losev N.F., Moshchenko I.N. Entropy theory of metamorphic transitions in coals. Crystallography Reports, 2000, vol. 45, no. 2, pp. 277–281.

6. Seridonio A.C., Walmsley L. Asymmetrical penetration of microwave in a conducting media and determination of microwave conductivity for very thin samples using electron spin resonance. J. Phys. Chem. Solids, 2001, vol. 62, no. 5, pp. 841–845.

7. Zevin V., Suss J.T., Zemel A., Rotter S. A new method for contactless conductivity measurement of a semiconductor layer. Solid State Commun., 1988, vol. 66, no. 5, pp. 553–555.

8. Sueki M., Rinard G.A., Eaton S.S., Eaton G.R. Impact of high-dielectric-loss materials on the microwave field in EPR experiments. J. Magn. Res. A, 1996, vol. 118, no. 2, pp. 173–188.

9. Nag B.R., Ghosh G., Dhar S. A simple microwave method for monitoring the conductivity of semiconductor epitaxial layers. Solid-State Electron., 1992, vol. 35, no. 12, pp. 1823–1826.

10. Poklonski N.A., Siahlo A.I., Shnitko V.T., Merkulov V.A., Davidenia M.O., Kovalev A.I. [Fast method of non-contact microwave measurements of electrical parameters of compact samples]. Pribory i Metody Izmerenii, 2013, no. 1(6), pp. 64–71 (in Russian).

11. Poklonskii N.A., Gorbachuk N.I. Electron paramagnetic resonance of percolation soot clusters in polyeth ylene. Journal of Applied Spectroscopy, 2001, vol. 68, no. 5, pp. 776–782.

12. Poklonski N.A., Vyrko S.A., Poklonskaya O.N., Lapchuk N.M., Munkhtsetseg S. Inversion of electron spin resonance signal in coals. Journal of Applied Spectroscopy, 2013, vol. 80, no. 3, pp. 366–371.

13. Myt’ko A.A., Papkov A.V., Penina N.M., Stel’makh V.F., Tsvirko L.V. Sposob kalibrovki spektrometra EPR [The way of ESR spectrometer calibration]: Patent USSR no. 1578610, 1990.

14. Eaton G.R., Eaton S.S., Barr D.P., Weber R.T. Quantitative EPR. Wien, Springer, 2010. 185 p.

15. Poole Ch.P., jr. Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques. New York, Dover Publications, 1997. 810 p.

16. Poole Ch.P., jr. The Physics Handbook: Fundamentals and Key Equations. New York, Wiley, 2007. 535 p.

17. Pamyatnykh E.A., Turov E.A. Osnovy elektrodinamiki material’nyh sred v peremennyh i neodnorodnyh poljah [Fundamentals of electrodynamics of material media in variable and inhomogeneous fields]. Moscow, Nauka. Fizmatlit Publ., 2000. 240 p.

18. Balanis C.A. Electromagnetic techniques in the development of coal-derived energy sources – a review. J. Microw. Power., 1983, vol. 18, no. 1, pp. 45–54.

19. Hotta M., Hayashi M., Lanagan M.T., Agrawal D.K., Nagata K. Complex permittivity of graphite, carbon black and coal powders in the ranges of X-band frequencies (8.2 to 12.4 GHz) and between 1 and 10 GHz. ISIJ Int., 2011, vol. 51, no. 11, pp. 1766–1772.


Review

For citations:


Poklonski N.A., Vyrko S.A., Poklonskaya O.N., Gorbachuk N.I., Siahlo A.I. TECHNIQUE OF ESTIMATE OF CONDUCTIVITY OF SMALL COAL SAMPLES BY THEIR INFLUENCE ON SIGNAL OF SPIN-LABEL IN RESONATOR OF ESR SPECTROMETER. Devices and Methods of Measurements. 2014;(2):53-59. (In Russ.)

Views: 2673


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)