Preview

Diode-Pumped Laser for Rangefinders Operating over Wide Temperature Range

https://doi.org/10.21122/2220-9506-2023-14-1-27-37

Abstract

A prototype of a pulsed diode-pumped laser based on Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) crystal emitting at 1064 nm is presented for use in airborne rangefinders and atmospheric LIDARs without use of expensive production technologies and components.

Actively Q-Switched laser pulse energy was estimated. Spatial characteristics of laser beam and dependence of pulse energy on the pump pulse energy were obtained at room temperature. Results of diodepumped laser pulse energy measurements are provided within 2 min for pulse repetition rates of 1, 4, 12.5, 22 Hz at ambient temperature range from -40 to +60 °C. Laser diode arrays temperature stabilization was achieved by the use of Peltier module with cooling capacity of 30 W.

Pulse energy values not less than 80 mJ were achieved in the studied ranges of ambient temperature and pulse repetition rate. Laser beam divergence at room temperature does not exceed 1.9 mrad.

 

About the Authors

V. E. Orekhova
Peleng JSC
Belarus

Address for correspondence:
Orekhova V.E. –
JSC «Peleng»,

Makayonka str., 25, г. Minsk 220114, Belarus
e-mail: vikawatutsina@gmail.com




V. E. Kisel
Belarusian National Technical University
Belarus

Center for Optical Materials and Technologies

Nezavisimosty Ave., 65, Minsk 220013



K. A. Orekhov
Peleng JSC
Belarus

Makayonka str., 25, г. Minsk 220114



References

1. Sabatini R., Richardson M.A., Gardi A., Ramasamy S. Airborne laser sensors and integrated. Progress in Aerospace Sciences, vol. 79, Nov, 2015, pp. 15‒53. DOI: 10.1016/j.paerosci.2015.07.002

2. RichardsonM. Laser systems overview: General. Airborne Laser Systems Testing and Analysis. Dr. Mark A. Richardson. Swindon, 2010, Ch. 2.1, pp. 2‒1.

3. Bahuguna K.C., Sharma P., Vasan N.S., Gaba S.P. Laser Range Sensors. Defence Science Journal, 2007, vol. 57, no. 3, pp. 881‒890. DOI: /10.14429/dsj.57.1827

4. Dolgih A.E., Zhidkov P.M. Model aviacionnogo impulsnogo lazernogo dalnomera, rabotayushego po aerodinamicheskim obektam [Model of an aviation pulsed laser rangefinder operating on aerodynamic objects]. Trudy MAI. Ser. Sistemnyj analiz, upravlenie i obrabotka informacii [Proceedings of MAI. Ser. System analysis, management and information processing], 2018, no. 100 (in Russian).

5. Coney A.T., Beecher S., Damzen M.J., Elder I. High-energy Q-switched Nd:YAG oscillator and amplifier development for large-mode, low-alignment sensitivity applications. Laser Physics Letters, 2022, vol. 19, no. 8, р. 085001. DOI: 10.1088/1612-202X/ac73f9

6. Sicard M., Molero F., Guerrero-Rascado J.L., Pedrós R., Expósito F.J., Córdoba-Jabonero C., ... , Moreno J.M. Aerosol Lidar Intercomparison in the Framework of SPALINET ‒ The Spanish Lidar Network: Methodology and Results. IEEE Transactions on Geoscience and Remote Sensing, 2009, vol. 47, no. 10, рр. 3547‒3559. DOI: 10.1109/TGRS.2009.2021525

7. Ryabtsev G.I., Bogdanovich M.V., Grigor’ev A.V., Kabanov V.V., Kostik O.E., Lebiadok Y.V., ... , Tsitavets U.S. Powerful all-solid-state multiwave laser for aerosol lidars. Opticheskii Zhurnal, 2014, vol. 81, pp. 20‒25. DOI: 10.1364/JOT.81.000571

8. A.G.V. de Brum, F.C. da Cruz Reviewed plan of the ALR, the laser rangefinder for the ASTER deep space mission to the triple asteroid 2001-SN263. Journal of Physics: Conference Series, XVIII Brazilian Colloquium on Orbital Dynamics 28 November to 2 December 2016, vol. 911, 012016. DOI: 10.1088/1742-6596/911/1/012016

9. Gerken M., Fritze J., Münzberg M., Weispfenning M. Military reconnaissance platform for the spectral range from the visible to the MWIR. Infrared Technology and Applications XLIII: Proc. of SPIE, 2019, vol. 10177, рр. 85‒100. DOI: 10.1117/12.2264440

10. Ma X., Bi J., Hou X., Chen W. High efficiency diode-pumped slab oscillator and amplifier for spacebased application. J. Optics & Laser Technology, 2011, vol. 43, no. 3, pp. 559‒562. DOI: 10.1016/j.optlastec.2010.07.016

11. Huang Y.J., Huang B.Y., Lin Y.C., Wang T.D., Tai P.T. Development of a high-energy Q-switched slab laser for targeting designation. Proc. of SPIE, Electro-Optical and Infrared Systems: Technology and Applications XV, 2018, vol. 10795, рр. 148‒153. DOI: 10.1117/12.2325287

12. Coyle D.B., Kay R.B., Stysley P.R., Poulios D. Efficient, reliable, long-lifetime, diode-pumped Nd:YAG laser for space-based vegetation topographical altimetry. Applied Optics, 2004, vol. 43, no. 27, pp. 5236‒5242. DOI: 10.1364/AO.43.005236

13. Coyle D.B., Kay R.B., Lindauer S.J. Design and performance of the vegetation canopy Lidar (VCL) laser transmitter. IEEE Aerospace Conference Proceedings, 2002, vol. 3, р. 3. DOI: 10.1109/AERO.2002.1035282

14. Frese E.A. Component-level selection and qualification for the Global Ecosystem Dynamics Investigation (GEDI) laser altimeter transmitter. Proc. of SPIE, Laser Radar Technology and Applications XXIII, 2018, vol. 10636, pp. 184‒193. DOI: 10.1117/12.2304032

15. White A.L. Wavelength Selection and WideTemperature-Range Operation of Neodymium-Doped Lasers: Thesis presented for the degree of Engineering Doctorate in Photonics. Laser Cavity Design. Heriot-Watt University School of Engineering and Physical Sciences, 2014, Ch. 1.1.4, p. 16.

16. Krebs D., Novo-Gradac A.-M., Li S., Lindauer S., Afzal R., Anthony W. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury. Applied Optics, 2005, vol. 44, no. 9, pp. 1715‒1718. DOI: 10.1364/ao.44.001715

17. Wei Xie Temperature insensitive high energy Q-switched Nd:YAG slab laser. Laser Phys. Lett., 2017, vol. 14, no. 6, p. 5. DOI: 10.1088/1612-202X/aa6c7d8

18. McCarthy J.C., Young Y.E., Day R.C., Konves J., Ketteridge P.A., Snell K., Chicklis E.P. Athermal, Lightweight, Diode-Pumped, 1 micron Transmitter. Proc. of SPIE Solid State Lasers XIV, San Jose, Lasers and Applications in Science and Engineering, 2005, vol. 5707, рр. 237‒242. DOI: 10.1117/12.589994

19. Degnan J.J., Coyle D.B., Kay R.B. Effects of thermalization on Q-switched laser properties. IEEE Journal of Quantum Electronics, 1998, vol. 34, iss. 5, рр. 887‒899. DOI: 10.1109/3.668777

20. Koechner W. Nd:YAG. Solid-State Laser Engineering. Dr. Walter Koechner, 6 ed., Round Hill Publ., 2006, ch. 4.1.2, pp. 54‒61.

21. Lin Bo, Lee H.S., Prasad C.R. Temporal behavior of the laser pulse for intracavity optical parametric oscillator. Optics Express, 2007, vol. 15, no. 8, pp. 4902‒4908. DOI: 10.1364/OE.15.004902

22. Yoon S.J., Mackenzie J.I. Implications of the temperature dependence of Nd:YAG spectroscopic values for low temperature laser operation at 946 nm. Proc. of SPIE, Laser Sources and Applications II, 2014, p. 8, vol. 9135, p. 913503. DOI: 10.1117/12.2054333


Review

For citations:


Orekhova V.E., Kisel V.E., Orekhov K.A. Diode-Pumped Laser for Rangefinders Operating over Wide Temperature Range. Devices and Methods of Measurements. 2023;14(1):27-37. (In Russ.) https://doi.org/10.21122/2220-9506-2023-14-1-27-37

Views: 639


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)