Preview

Devices and Methods of Measurements

Advanced search

An Approach to Monitoring of Magnetic Parameters of Cores of a Chain of Spheres. Diagnostics of Different Chain’s Length and Core’s Radius

https://doi.org/10.21122/2220-9506-2022-13-2-117-127

Abstract

The basic structural elements of the magnetized granular medium (effectively used, in particular, in apparatus of thin magnetic separation) are granule chains (according to channel-by-channel model), in connection with which there is a need to detail the features of their magnetization. The purpose of the work is to develop and implement an approach to measuring magnetic (micro)flows along the cores of different radius r in the chain of granules using a specially developed (by printed circuit board technology) sensor, with high radius R (15 and 20 mm) spheres available for such measurements.

From the data of measuring magnetic (micro)flows data of average induction in each of the quasi-continuous cores of the spheres chain are obtained, as well as data of magnetic permeability and susceptibility of these cores, their magnetization for different values of the intensity of the magnetizing field. It is shown that dependences of mentioned magnetic parameters from number n spheres in a chain are generalized on r /R for different R.

These relationships, increasing as n increases due to a decrease in the demagnetizing factor N of any of the cores and the chain as a whole, demonstrate the achievement of individually limiting values of magnetic parameters and corresponding auto-model regions where N→0. At the same time, the transition to each of these regions, manifesting almost independently of r /R and intensity, falls on the value of n = 10–12 = [n]. Thus, in fact, such a criterion value [n] distinguishes chains by sufficiently “long” – when n ≥ [n] and “short” – when 2 ≤ n ˂ [n]. Data of demagnetizing factor for different cores of “short” chains of spheres are obtained and phenomenologically described.

About the Authors

A. A. Sandulyak
MIREA – Russian Technological University
Russian Federation

Stromynka str., 20, Moscow 107996, Russia



D. A. Sandulyak
MIREA – Russian Technological University
Russian Federation

Address for correspondence: Sandulyak D.A.
MIREA – Russian Technological University,
Stromynka str., 20, Moscow 107996, Russia
.sandulyak@mail.ru



Y. O. Gorpinenko
MIREA – Russian Technological University
Russian Federation

Stromynka str., 20, Moscow 107996, Russia



A. V. Sandulyak
MIREA – Russian Technological University
Russian Federation

Stromynka str., 20, Moscow 107996, Russia



V. A. Ershova
MIREA – Russian Technological University
Russian Federation

Stromynka str., 20, Moscow 107996, Russia



References

1. Périgo E.A., Weidenfeller B., Kollár P., Füzer J. Past, present, and future of soft magnetic composites. Applied Physics Review, 2018, vol. 5, no. 3, p. 031301. DOI: 10.1063/1.5027045

2. Strečková M., Füzer J., Kobera L., Brus J., Faberova M., Bures R., Kollar P., Lauda M., Medvecky L., Girman V., Hadraba H., Batʼkova M., Batʼko I. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods. Materials Chemistry and Physics, 2014, vol. 147, iss. 3, pp. 649–660. DOI: 10.1016/j.matchemphys.2014.06.004

3. Kanhe N.S., Kumar A., Yusuf S.M., Nawale A.B., Gaikwad S.S., Raut Suyog A., Bhoraskar S.V., Sheng Wu Yun, Das A.K., Mathe V.L. Investigation of structural and magnetic properties of thermal plasma-synthesized Fe1− xNiχ alloy nanoparticles. Journal of Alloys and Compounds, 2016, vol. 663, pp. 30–40. DOI: 10.1016/j.jallcom.2015.11.190

4. Birčáková Z., Kollár P., Weidenfeller B., Füzer J., Fáberová M., Bureš R. Reversible and irreversible DC magnetization processes in the frame of magnetic, thermal and electrical properties of Fe-based composite materials. Journal of Alloys and Compounds, 2015, vol. 645, pp. 283–289. DOI: 10.1016/j.jallcom.2015.05.121

5. Kollár P., Birčáková Z., Vojtek V., Füzer J., Bureš R., Fáberova M. Dependence of demagnetizing fields in Fe-based composite materials on magnetic particle size and the resin content. Journal of Magnetism and Magnetic Materials, 2015, vol. 388, pp. 76–81. DOI: 10.1016/j.jmmm.2015.04.008

6. Bai K., Casara J., Nair-Kanneganti А., Wahl A., Carle F., Brown E. Effective magnetic ceptibility of suspensions of ferro-magnetic particles. Journal of Applied Physics, 2018, vol. 124, p. 123901. DOI: 10.1063/1.5041750

7. Moore R.L. Development of a volume fraction scaling function for demagnetization factors in effective media theories of magnetic composites. AIP Advances, 2019, vol. 9, p. 035107. DOI: 10.1063/1.5078736

8. Moore R.L. Development and test of concentration scaled demagnetization in effective media theories of magnetic composites. Journal of Applied Physics, 2019, vol. 125, p. 085101. DOI: 10.1063/1.5053791

9. Sandulyak A.A., Sandulyak D.A., Ershova V.A., Sandulyak A.V. Ferrous Material Fill: Magnetization Channels, Layer-by-Layer and Average Permeability, Element-to-Element Field. Analysis and Modelling of Advanced Structures and Smart Systems, 2017, vol. 81, pp. 191–210. DOI: 10.1007/978-981-10-6895-9_9

10. Sandulyak A.V., Sandulyak A.A., Ershova V.A. Magnetization curve of a granulated medium in terms of the channel-by-channel magnetization model (new approach). Doklady Physics, 2007, vol. 52, pp. 179–181. DOI: 10.1134/S1028335807040027

11. Sandulyak A.V., Gorpinenko Yu.O., Polismakova M.N., Sandulyak D.A., Sandulyak A.A. Magnetic flow and induction in the hearts of magnetizable ball chains. Engineering, 2020, no. 6(96), pp. 96–110. DOI: 10.23670/IRJ.2020.96.6.017

12. Kolomeitsev A.A., Zatonov I.A., Pischanskaya M.I., Baranov P.F., IlyaschenkoD.P., Verkhoturova E.V. Designing a Planar Fluxgate Using the PCB Technology. Devices and Methods of Measurements, 2021, vol. 12, no. 2, рр. 117–123. DOI: 10.21122/2220-9506-2021-12-2-117-123

13. Uchaikin S., Likhachev A., Cioata F., Perminov I., Sanghera H., Singh I., Spear P., Chavez P., Han X., Petroff C., Rich C. 3D magnetometer for a dilution refrigerator. Journal of Physics: Conference Series, 2012, vol. 400, p. 052037. DOI: 10.1088/1742-6596/400/5/052037

14. Chen D.X., Pardo E., Zhu Y.-H., Xiang L.-X., Ding J.-Q. Demagnetizing correction in fluxmetric measurements of magnetization curves and hysteresis loops of ferromagnetic cylinders. Journal of Magnetism and Magnetic Materials, 2018, vol. 449, pp. 447–454. DOI: 10.1016/j.jmmm.2017.10.


Review

For citations:


Sandulyak A.A., Sandulyak D.A., Gorpinenko Y.O., Sandulyak A.V., Ershova V.A. An Approach to Monitoring of Magnetic Parameters of Cores of a Chain of Spheres. Diagnostics of Different Chain’s Length and Core’s Radius. Devices and Methods of Measurements. 2022;13(2):117-127. https://doi.org/10.21122/2220-9506-2022-13-2-117-127

Views: 1577


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)