CHEMICAL SENSORS BASED ON NANOSTRUCTURAL MATERIALS. PART 1. GAS SENSORS. (Review)
Abstract
Analysis of modern methods of preparation of gas sensors than utilize nanostructural materials in the basic construction has been made. Nanostructural materials utilization in the sensor increases specific surface area of its sensitive layer. Two groups of the methods that promote to solve this task were selected. The first one is related to the utilization of nanoporous anodic alumina substrate and/or membrane as sensor template. The second one includes the preparation of the sensitive layers based on the 1D–3D nanostructures. Enhancement of the sensor output characteristics is determined by the collection of advanced physicalchemical properties of nanomaterials and nanostructures utilized in the sensor construction.
References
1. Lillis B., Hurley E., Galvin S., Mathewson A., Berney H. A novel, high surface area, capacitance based silicon sensor for DNA hybridisation detection. Proceed. 16-th Europ. Conf. on Solid State Transducers EUROSENSORS XVI. Prague, 2002, pp. 693–694.
2. Varghese O.K., Gong D., Paulose M., Ong K.G., Grimes C.A., Dickey E.C. Highly ordered nanoporous alumina films: Effect of pore size and uniformity on sensing performance. J. Mater. Res., 2002, vol. 17, pp. 1162–1171.
3. Khatko V., Gorokh G., Mozalev A., Solovei D., Llobet E., Vilanova X., Correig X. Tungsten trioxide sensing layers on highly ordered nanoporous alumina template. Sensor and Actuators; B. Chemical, 2006, vol. 118, pp. 255–262.
4. Sajt kompanii Synkera [Website of Synkera Technologies, Inc.]. Available at: http://www.synkerainc.com (accessed 10.08.2014).
5. Gorokh G., Zakhlebaeva A., Khatko V., Belahurau Ya., Taratyn I. Nanoporous alumina substrates for low-power chemical sensors. Proceed. International Nanomeeting-2013 “Physics, chemistry and application of nanostructures”. Minsk, Belarus Publ., pp. 614–617.
6. Li G.-J., Zhang X.-H., Kawi S. Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors // Sensor and Actuators; B. Chemical, 1999, vol. 60, pp. 64–70.
7. Khatko V., Soltis R., McBride J., Nietering K. Catalytic properties of Pd/SiO2 and Pt/SiO2 multilayer stacks // Sensor and Actuators; B. Chemical, 2001, vol. 77, pp. 548–554.
8. Horprathum M., Limwichean K., Wisitsoraat A., Eiamchai P., Aiempanakit K., Limnonthakul P., Nuntawong N., Pattantsetakul V., Tuantranont A., Chindaudom P. NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering // Sensor and Actuators; B. Chemical, 2013, vol. 176, pp. 685–691.
9. Gorokh G., Mozalev A., Solovei D., Khatko V., Llobet E., Correig X. Anodic formation of low-aspect-ratio porous alumina films for metal-oxide sensor application. Electrochimica Acta, 2006, vol. 52, №4, pp. 1771–1780.
10. Khatko V., Gorokh G., Mozalev A., Solovei D., Guirado F., Llobet E., Correig X. Evolution of surface morphology, crystallite size, and texture of WO3 layers sputtered onto Si-supported nanoporous alumina templates. J. Electrochem. Soc., 2008, vol. 155, № 7, pp. K116–K123.
11. Stankova M., Vilanova X., Calderer J., Llobet E., Brezmes J., Gràcia I., Cané C., Correig X. Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sensor and Actuators; B. Chemical, 2006, vol. 113, pp. 241–248.
12. Belahurau Ya.A., Shukevich Ya.I., Barkaline V.V., Khatko V.V., Taratyn I.A. [Application of nanoporous anodic alumina by gas microsystem design]. Pribory i metody izmerenij, 2011, № 2(3), pp. 59–65 (in Russian).
13. Barkaline V.V., Belahurau Ya.A., Taratyn I.A., Khatko V.V., Shukevich Ya.I. [Finite element modulation of hermomechanical behavior of nanoporous materials]. Nanoi microsistemnye tekhnologii, 2012, № 1, pp. 18–24 (in Russian).
14. Sajt kompanii GE Healthcare Life Sciences [Website of GE Healthcare Life Sciences.]. Available at: http://www.whatman.com (accessed 10.08.2014).
15. Khatko V.V., Gorokh G. G., Taratyn I.A. [Gas sensors and microsystems based on nanostructural materials]. Materialy 6-j mezhdunarodnoj nauchno-tekhnicheskoj konferencii «Priborostroyeniye–2013» [Proceed. 6-th International Conf. “Instrument engineering–2013”], Мinsk, Belarus, 2013, pp. 10–12 (in Russian).
16. Kapa P., Liu P., Deepu D., Fang J., Varahramyan K., Davis W., Ji H.-F. Moisture measurement using porous aluminum oxide coated microcantilevers, Sensor and Actuators; B. Chemical, 2008, vol. 134, pp. 390–395.
17. Lee D., Shin N., Lee K.-H., Jeon S. Microcantilevers with nanowells as moisture sensors. Sensor and Actuators; B. Chemical, 2009, vol.137, pp. 561–565.
18. Akiyama T., Ishikawa Y., Hara K. Xylene sensor using double-layered thin film and Ni-deposited porous alumina // Sensor and Actuators; B. Chemical, 2013, vol. 181. pp. 348–352.
19. Blackman C.S., Correig X., Katko V., Mozalev A., Parkin I.P., Alcubilla R., Trifonov T. Templated growth of tungsten oxide micro/nanostructures using aerosol assisted chemical vapour deposition. Materials Letters, 2008, vol. 62, pp. 4582–4584.
20. Kovacs A., Mescheder U. Transport mechanisms in nanostructured porous silicon layers for sensor and filter applications. Sensor and Actuators; B. Chemical, 2012, vol. 175, pp. 179–185.
21. Lee J.-H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensor and Actuators; B. Chemical, 2009, vol. 140, pp. 319–336.
22. Comini E., Baratto C., Concina I., Faglia G., Falasconi M., Ferroni M., Galstyan V., Gobbi E., Ponzoni A., Vomiero A., Zappa D., Sberveglieri V., Sberveglieri G. Metal oxide nanoscience and nanotechnology for chemical sensors. Sensor and Actuators; B. Chemical, 2013, vol. 179, pp. 3–20.
23. Tsuchiya H., Macak J. M., Sieber I., Taveira L., Ghicov A., Sirotna K., Schmuki P. Self-organized porous WO3 formed in NaF electrolytes. Electrochemistry Communications, 2005, vol. 7, pp. 295–298.
24. Tsuchiya H., Schmuki P. Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes. Electrochemistry Communications, 2004, vol. 6, pp. 1131–1134.
25. Macak J. M., Sirotna K., Schmuki P. Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes. Electrochim. Acta, 2005, vol. 50, pp. 3679–3684.
26. Tsuchiya H., Schmuki P. Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization. Electrochemistry Communications, 2005, vol.7, pp. 49–52.
27. Sieber I., Hildebrand H., Friedrich A., Schmuki P. Formation of self-organized niobium porous oxide on niobium. Electrochemistry Communications, 2005, vol. 7, pp. 97–100.
28. Gorokh G., Khatko V., Mozalev A., Solovei D., Llobet E., Correig X. Nanoporous anodic titania films for gas sensor application. Materialy pervoj mezhdunarodnoj nauchnoj konferencii «Nanostrukturnye materialy-2008: Belarus’ – Rossiya – Ukraina» НАНО–2008 [Proceed. 1-st International Conf. “Nanostructural materials–2008: Belarus–Russia-Ukraine”, NANO-2008], Minsk, Belarus, p. 567.
29. Mozalev A., Khatko V., Bittencourt C., Hassel A. W., Gorokh G., Llobet E., Correig X. Nanostructured columnlike tungsten oxide film by anodizing Al/W/Ti layers on Si. Chem. Mater., 2008, vol. 20, pp. 6482–6493.
30. Calavia R., Mozalev A., Khatko V., Gorokh G., Vilanova X, Correig X., Grácia I., Cané C., Llobet E. A H2 microsensor based on nanocolumnar tungsten oxide grown by template-assisted anodization. 15-th International Conf. on Solid-State Sensors, Actuators and Microsystems: “Tranducer-09”, 2009, Denver, Colorado, USA, T3P. 109, pp. 1313–1316.
31. Li Ch., Thostenson E. T., Chou T.-W. Sensors and actuators based on carbon nanotubes and their composites: A review. Composites Science and Technology, 2008, vol.68, pp. 1227-1249.
32. Llobet E. Gas sensors using carbon nanomaterials: A review. Sensor and Actuators; B. Chemical, 2013, vol. 179, pp. 32–45.
33. Iqbal N., Afzal A., Cioffi N., Sabbatini L., Torsi L. NOx sensing oneand two-dimensional carbon nanostructures and nanohybrids: Progress and perspectives. Sensor and Actuators; B. Chemical, 2013, vol. 181, pp. 9–21.
34. Robbie K., Brett M.J. Sculptured thin films and glancing angle deposition: growth mechanics and applications. J. Vac. Scie. Technol., 1997, vol. A15, № 3, pp. 1460–1465.
35. Khatko V.V., Logothetis E.M., Soltis R.E., Hangas J.W., McBride J.R. Development of highly active catalyst for Simicrocalorymetric gas sensor. Advanced Microsystems for Automotive Application 2000. Eds.: S. Kruger; W. Gessner, Berlin: Springer, 2000, pp. 27–37.
36. Khatko V.V. [Pd/Al2O3 and Pt/Al2O3 multilayer stacks in thermocatalytic gas sensors on silicon]. Izvestsiya Natsyonal’noj Akademii Nauk Belarusi. Seriya fiz.-tech. nauk, 2013, № 4, pp. 108–112 (in Russian).
37. Vallejos S., Khatko V., Calderer J., Gràcia I., Cané C., Llobet E., Correig X. Micro-machined WO3-based sensors selective to oxidizing gases. Sensor and Actuators; B. Chemical, 2008, vol. 132, pp. 209–215.
38. Khatko V., Vallejos S., Calderer J., Gràcia I., Cané C., Llobet E., Correig X. Micro-machined WO3-based sensors with improved characteristics. Sensor and Actuators; B. Chemical, 2009, vol. 140, pp. 356–362.
39. Khatko V. Struktury metall – dioksid kremniya – poluprovodnik glya mikroskhem [Structure of metal-silicon dioxide-semiconductor for IC]. Minsk, BNTU, 2009, 234 p. (in Russian).
Review
For citations:
Khatko V.V. CHEMICAL SENSORS BASED ON NANOSTRUCTURAL MATERIALS. PART 1. GAS SENSORS. (Review). Devices and Methods of Measurements. 2014;(2):5-16. (In Russ.)