Autonomous Streaming Space Objects Detection Based on a Remote Optical System
https://doi.org/10.21122/2220-9506-2021-12-4-272-279
Abstract
Traditional image processing techniques provide sustainable efficiency in the astrometry of deep space objects and in applied problems of determining the parameters of artificial satellite orbits. But the speed of the computing architecture and the functions of small optical systems are rapidly developing thus contribute to the use of a dynamic video stream for detecting and initializing space objects. The purpose of this paper is to automate the processing of optical measurement data during detecting space objects and numerical methods for the initial orbit determination.
This article provided the implementation of a low-cost autonomous optical system for detecting of space objects with remote control elements. The basic algorithm model had developed and tested within the framework of remote control of a simplified optical system based on a Raspberry Pi 4 single-board computer with a modular camera. Under laboratory conditions, the satellite trajectory had simulated for an initial assessment of the compiled algorithmic modules of the computer vision library OpenCV.
Based on the simulation results, dynamic detection of the International Space Station in real-time from the observation site with coordinates longitude 25o41′49″ East, latitude 53o52′36″ North in the interval 00:54:00–00:54:30 17.07.2021 (UTC + 03:00) had performed. The video processing result of the pass had demonstrated in the form of centroid coordinates of the International Space Station in the image plane with a timestamps interval of which is 0.2 s.
This approach provides an autonomous raw data extraction of a space object for numerical methods for the initial determination of its orbit.
About the Authors
V. S. BaranovaBelarus
Address for correspondence: Baranova V.S. – Belarusian State University, Nezavisimosti Ave., 4, Minsk 220030, Belarus
e-mail: rct.baranovaVS@bsu.by
V. A. Saetchnikov
Belarus
Nezavisimosti Ave., 4, Minsk 220030
A. A. Spiridonov
Belarus
Nezavisimosti Ave., 4, Minsk 220030
References
1. Walker C., Hall J. (eds.) Impact of Satellite Constellations on Optical Astronomy and Recommendations Toward Mitigations. [Electronic resource]: https://web. archive.org/web/20201129021356/https://aas.org/sites/default/files/2020-08/SATCON1-Report.pdf (accessed: 30.09.2021).
2. Gallozzi S., Scardia M., Roma M.M., Brera I.A., Trieste I. Concerns about ground based astronomical observations: a step to safeguard the astronomical sky. arXiv: Instrumentation and Methods for Astrophysics, 2020, 16 p.
3. Villela T., Costa C.A., Brandão A.M., Bueno F.T., Leonardi R. Towards the Thousandth CubeSat: A Statistical Overview. International Journal of Aerospace Engineering, 2019, vol. 2019, pp. 1–13. DOI: 10.1155/2019/5063145
4. Satellite Box Score. Orbital Debris Quarterly News. NASA, 2021, vol. 25, no. 3, 12 p.
5. Shakun L., Koshkin N., Korobeynikova E., Kozhukhov D., Kozhukhov O., Strakhova S. Comparative analysis of global optical observability of satellites in LEO. Advances in Space Research, 2020, vol. 67(1), pp. 1743–1760. DOI: 10.1016/j.asr.2020.12.021
6. Woods D.F., Shah R.Y., Johnson J.A., Szabo A., Pearce E.C., Lambour R.L., Faccenda W.J. Space Surveillance Telescope: focus and alignment of a three mirror telescope. Optical Engineering, 2013, vol. 52, no. 5, pp. 053604-1– 053604-11. DOI: 10.1117/1.OE.52.5.053604
7. Masias M., Freixenet J., Lladó X., Peracaula M. A review of source detection approaches in astronomical images. Monthly Notices of the Royal Astronomical Society, 2012, vol. 422, iss. 2, pp. 1674–1689. DOI: 10.1111/j.1365-2966.2012.20742.x
8. Schildknecht T., Hinze A., Schlatter P., Silha J., Peltonen J., Säntti T., Flohrer T. Improved Space Object Observation Techniques using CMOS Detectors. Proceedings of 6th European Conference on Space Debris,Darmstadt, Germany, 2013.
9. Danescu R., Ciurte A., Turcu V. A Low Cost Automatic Detection and Ranging System for Space Surveillance in the Medium Earth Orbit Region and Beyond. Sensors, 2014, vol. 14, no. 2, pp. 2703–2731. DOI: 10.3390/s140202703
10. Vallado D. Fundamentals of Astrodynamics and Applications. Hawthorne: Microcosm Press, 2013, 1106 p.
11. Spiridonov A.A., Saetchnikov V.A., Ushakov D.V., Cherny V.E., Kezik A.G. Small Satellite Orbit Determination Methods Based on the Doppler Measurements by Belarusian State University Ground Station. IEEE Journal on Miniaturization for Air and Space Systems, 2021, vol. 2, no. 2, pp. 59–66. DOI: 10.1109/JMASS.2020.3047456
12. Bonnarel F., Fernique P., Bienaymé O., Egret D., Genova F., Louys M., Ochsenbein F., Wenger M., Bartlett J.G. The ALADIN interactive sky atlas – A reference tool for identification of astronomical sources. Astron. Astrophys. Suppl. Ser., 2000, vol. 143(1), pp. 33–40. DOI: 10.1051/aas:2000331
13. Yonghui Xu, Zhang Jihui. Real-time Detection Algorithm for Small Space Targets Based on Max-median Filter. The Journal of Information and Computational Science, 2014, no. 11, pp. 1047–1055. DOI: 10.12733/JICS20102961
14. Zhang Xueyang, Xiang Junhua, Zhang Yulin. Space Object Detection in Video Satellite Images Using Motion Information. International Journal of Aerospace Engineering, 2017, vol. 2017, 9 p. DOI: 10.1155/2017/1024529
15. Francesco Diprima, Santoni Fabio, Piergentili Fabrizio, Fortunato Vito, Abbattista Cristoforo, Amoruso Leonardo, Cardona T. An efficient and automatic debris detection framework based on GPU technology, 2017. [Electronic resource]: https://api.semanticscholar.org/CorpusID:55225562 (accessed: 26.09.2021).
16. Marc Masias Moyset. Automatic source detection inastronomicalimages, 2014. Corpus ID: 129994570. [Electronic resource]: https://www.semanticscholar.org/paper/Automatic-source-detection-in-astronomical-images-Moyset/cc5ab6eab73284687713782dfdaa377ac777b9b9 (accessed: 26.09.2021).
17. Cookbook Raspberry Pi, Monk Simon, Media O’Reilly. Inc. 1005 Gravenstein Highway North, Sebastopol, 2016, CA 95472.
18. Beroiz M., Cabral J.B., Sanchez B. Astroalign: A Python module for astronomical image registration. Astronomy and Computing, 2020, vol. 32, p. 100384. DOI: 10.1016/j.ascom.2020.100384
19. Pulli Kari, Baksheev Anatoly, Kornyakov Kirill, Eruhimov Victor. Real-Time Computer Vision with OpenCV. Communications of the ACM, 2012, vol. 55, no. 6, pp. 61–69. DOI: 10.1145/2184319.2184337
20. Singh P., Deepak B.B.V.L., Sethi T., Murthy M.D.P. Real-time object detection and Tracking using color feature and motion. International Conference on Communications and Signal Processing (ICCSP), 2015, pp. 1236–1241. DOI: 10.1109/ICCSP.2015.7322705
21. Zhu H.J., Han B.C., Qiu B. Survey of Astronomical Image Processing Methods. In: Zhang YJ. (eds). Image and Graphics. Lecture Notes in Computer Science, Springer, Cham, 2015, vol. 9219, pp. 420–429. DOI: 10.1007/978-3-319-21969-1_37
22. Zou Y., Zhao J., Wu Y., Wang B. Segmenting Star Images with Complex Backgrounds Based on Correlation between Objects and 1D Gaussian Morphology. Appl. Sci., 2021, vol. 11(9), p. 3763. DOI: 10.3390/app11093763
Review
For citations:
Baranova V.S., Saetchnikov V.A., Spiridonov A.A. Autonomous Streaming Space Objects Detection Based on a Remote Optical System. Devices and Methods of Measurements. 2021;12(4):272-279. (In Russ.) https://doi.org/10.21122/2220-9506-2021-12-4-272-279