Rationale for the Choice of the Ellipsoidal Reflector Parameters for Biomedical Photometers
https://doi.org/10.21122/2220-9506-2021-12-4-259-271
Abstract
Biomedical photometersʼ information-measuring systems with ellipsoidal reflectors have acceptable results in determining of biological tissues optical properties in the visible and near-infrared spectral range. These photometers make it possible to study the optical radiation propagation in turbid media for direct and inverse problems of light-scattering optics. The purpose of this work is to study the influence of the ellipsoidal reflectors design parameters on the results of biomedical photometry when simulating the optical radiation propagation in a system of biological tissue and reflectors in transmitted and reflected light.
The paper substantiates the choice of the ellipsoidal reflectors’ focal parameter for efficient registration of forward and backscattered light. The methodology of the process is illustrated by the results of a model experiment using the Monte Carlo simulation for samples of human brain white and gray matter at the visible range of 405 nm, 532 nm, and 650 nm. The total transmittance, diffuse reflectance, and absorption graphs depending on the sample thickness were obtained. Based on the introduced concepts of the ellipsoidal reflector efficiency index and its efficiency factor, the expediency of choosing the ellipsoidal reflectors focal parameter is analyzed to ensure the registration of the maximum amount of scattered light. The graphs of efficiency index in reflected and transmitted light for different thickness samples of white and gray matter and efficiency factors depending on the sample thickness were obtained.
The influence of the reflectors ellipticity on the illuminance of various zones of photometric images using the example of an absorbing biological medium – pig liver tissue – at wavelength of 405 nm with a Monte Carlo simulation was analyzed.
The optical properties of biological media (scattering and absorption coefficients, scattering anisotropy factor, refractive index) and the samples’ geometric dimensions, particularly the thickness, are predetermined when choosing the ellipsoidal reflectors parameters for registration of the scattered light. Coordinates of the output of photons and their statistical weight obtained in the Monte Carlo simulation of light propagation in biological tissue have a physical effect on a characteristic scattering spot formation in the receiving plane of a biomedical photometer with ellipsoidal reflectors.
About the Authors
N. V. BezuglayaUkraine
Peremohy Ave., 37, Kyiv 03056
A. A. Haponiuk
Ukraine
Peremohy Ave., 37, Kyiv 03056
D. V. Bondariev
Ukraine
Peremohy Ave., 37, Kyiv 03056
S. A. Poluectov
Ukraine
Peremohy Ave., 37, Kyiv 03056
V. A. Chornyi
Ukraine
Peremohy Ave., 37, Kyiv 03056
M. A. Bezuglyi
Ukraine
Address for correspondence: Bezuglyi M.A. – National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Peremohy Ave., 37, Kyiv 03056, Ukraine
e-mail: m.bezuglyi@kpi.ua
References
1. Tuchin V.V. Handbook of Optical Biomedical Diagnostics, In 2 vol., vol. 1. Bellingham. WA. USA, 2016, 864 p. DOI: 10.1117/3.2219603
2. Meglinski I. Biophotonics for Medical Applications 1st Edition. Woodhead Publishing, 2014, 402 p.
3. Bezuglyi M.A., Bezuglaya N.V. Ellipsoidal reflectors in biomedical diagnostic. Biophotonics, Riga, 2013, vol. 9032. DOI: 10.1117/12.2044606
4. Bezuglyi М.А., Pavlovets N.V. Optical Biometry of Biological Tissues by Ellipsoidal Reflectors in Clinical and Biomedical Spectroscopy and Imaging III. Optical Society of America, 2013, vol. 8798, p. 87980Q. DOI: 10.1117/12.2031142
5. Bezuglyi M.A., Yarych А.V., Botvinovskii D.V. On the possibility of applying a mirror ellipsoid of revolution to determining optical properties of biological tissues. Optics and Spectroscopy, 2012, vol. 113, no. 1, pp. 101–107. DOI: 10.1134/S0030400X12070053
6. Morris P. Biomedical imaging: applications and advances. Woodhead publishing series in biomaterials. Cambridge. Waltham: Elsevier WP, 2014, no. 63, pp. 307–318.
7. Wang L., Jacques S.L. Optimized radial and angular positions in Monte Carlo modeling. Med. Phys., 1994, vol. 21(7), pp. 1081–1083.
8. Yaroslavskij I.V., Tuchin V.V. Optics and spectroscopy, 1992, no. 4(72), pp. 934–939 (in Russian).
9. Ivanov Yu.S., Monsar O.O., Synyavskyj I.I. Production of deep aspherics by trajectory copying and its application. Bulletin of NTUU “KPI ”. Instrument making, 2004, vol. 28, pp. 24–28 (in Ukrainian).
10. Lister T., Wright P.A., Chappell P.H. Optical properties of human skin. J. Biomed. Opt., 2012, no. 17(9), pp. 090901. DOI: 10.1117/1.JBO.17.9.090901
11. Symmons A., Lifshotz M. Field Guide to Infrared Optical Materials. SPIE PRESS: Bellingham Publ., Washington, 2021, 210 p.
12. Friz M., Waibel F. Coating materials. Optical Interference Coatings. Springer-Verlag Publ., 2003, pp. 105–130.
13. Okatov M.A., Antonov E.A., Bajgozhin A. Directory of optician-technologist. 2nd ed. SPb: Politekhnika Publ., 2004, 679 p.
14. Zinchenko V.F., Antonovych V.P., Magunov I.R., Kocherba G.I., Sobol V.P., Mozkova O.V., Gorshtejn B.A. Film-forming materials and multilayer coatings of interference optics of technological IR lasers. Science and innovation, 2009, pp. 5–10 (in Ukrainian).
15. Putilin E.S. Optical coatings. Tutorial: SPbGUITMO Publ., 2005, 199 p.
16. Naba K.S., Sahoo N.K., Kumar S., Tokas R.B., Jen S., Thakur S., Reddy G.L.N. Postanalyses of an optical multilayer interference filter using numerical reverse synthesis and Rutherford backscattering spectrometry. Applied Optics, 2013, vol. 52, no. 10, pp. 2102–2115. DOI: 10.1364/AO.52.002102
17. Field E.S., Bellum J.C., Kletecka D.E. Repair of a Mirror Coating on a Large Optic for High Laser-Damage Applications Using Ion Milling and over-Coating Methods. Laser-Induced Damage in Optical Materials, 2016, no. 56(1). DOI: 10.1117/1.OE.56.1.011002
18. Agcayazi T., Chatterjee K., Bozkurt A., Ghosh T.K. Flexible Interconnects for Electronic Textiles. Advanced Materials Technologies, 2018, no. 3(10), 32 p. DOI: 10.1002/admt.201700277
19. Wang L., Lihong W., Jacques S.L., Zheng L. CONV – convolution for responses to a finite diameter photon beam incident on multi-layered tissues. Computer methods and programs in biomedicine, 1997, vol. 54, pp. 141–150.
20. Pawley J.B. Handbook of Biological Confocal Microscopy, 3rd ed. By James B. Pawley, Editor. Springer Science & Business Media: LLC, New York, 2006, 985 p.
21. Yaroslavsky A.N., Schulze P.C., Yaroslavsky I.V., Schober R., Ulrich F., Schwarzmaier H.J. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys Med. Biol., 2002, vol. 47, no. 12, pp. 2059−2073. DOI: 10.1088/0031-9155/47/12/305
22. Caigang Z., Quan L. Review of Monte Carlo modeling of light transport in tissues. J. of Biomedical Optics, 2013, no. 18(5), pp. 050902-1–050902-12. DOI: 10.1117/1.JBO.18.5.050902
23. Bezuglyi M.A., Bezuglaya N.V., Helich I.V. Ray tracing in ellipsoidal reflectors for optical biometry of media. Appl Opt., 2017, no. 56(30), pp. 8520–8526. DOI: 10.1364/AO.56.008520
24. Xue L.L., Zhang C.P., Wang X.Y., Zhu M.-Yao, Zhang L.S., Chi R.H., Zhang J.D., Zhang G.Y. Monte Carlo simulation of light transport in five-layered skin tissue. Chin. Phys. Lett., 2000, vol. 17, no. 12, pp. 909–911. DOI: 10.1088/0256-307X/17/12/019
25. Bezuglyi M., Bezuglaya N. Raman spectroscopy principles for in vivo diagnostic by ellipsoidal reflectors. Electrical, Control and Communication Engineering, 2019, vol. 15, no. 1, pp. 39–46. DOI: 10.2478/ecce-2019-0006
26. Bezuglyi M., Bezuglaya N., Kostuk S. Influence of laser beam profile on light scattering by human skin during photometry by ellipsoidal reflectors. Devices and Methods of Measurements, 2018, vol. 9, no. 1, pp. 56–65. DOI: 10.21122/2220-9506-2018-9-1-56-65
27. Ritz J.-P., Roggan A., Isbert Ch., Muеller G., Buhr H.J., Germer Ch.-T. Optical Properties of Native and Coagulated Porcine Liver Tissue Between 400 and 2400 nm. Lasers in Surgery and Medicine, 2001, vol. 29, no. 3, pp. 205–212. DOI: 10.1002/lsm.1134
28. Budagovskij A.V. Distant cell-to-cell communication. Monograph. M.: NPLC “Technique Publ.”, 2004, 104 p.
29. Fuerschbach K., Jannick P.R., Thompson K.P. A new family of optical systems employing φ-polynomial surface. Opt. Express, 2011, vol. 19, iss. 22, pp. 21919– 21928. DOI: 10.1364/OE.19.021919
30. López-Gil N., Fernández-Sánchez V., Legras R., Montés-Micó R., Lara F., Nguyen-Khoa J.-L. Accommodation-Related Changes in Monochromatic Aberrations of the Human Eye as a Function of Age. Investigative ophthalmology & visual science, 2008, no. 49, pp. 1736–1743. DOI: 10.1167/iovs.06-0802
Review
For citations:
Bezuglaya N.V., Haponiuk A.A., Bondariev D.V., Poluectov S.A., Chornyi V.A., Bezuglyi M.A. Rationale for the Choice of the Ellipsoidal Reflector Parameters for Biomedical Photometers. Devices and Methods of Measurements. 2021;12(4):259-271. (In Russ.) https://doi.org/10.21122/2220-9506-2021-12-4-259-271