Expanding of Excimer Laser Photoablation’s Functionality in Ophthalmology
https://doi.org/10.21122/2220-9506-2021-12-3-175-182
Abstract
One of the significant weaknesses of excimer laser-based vision correction devices is the difficulty of achieving a required change in the refractive properties of the cornea to sharply focus the image on the retina with distance from the working area (ablation zone) center to the periphery due to a change in the laser beam incidence angle. The study is aimed at improving the quality of laser action on the eye cornea by introducing an optical corrective system into the existing excimer laser vision correction equipment, ensuring the coincidence of the direction of the laser beam incidence on the corneal surface with the normal.
It has been shown that the greater the reflection coefficient, the lower the absorbed energy, and the shallower the laser radiation penetration and ablation depths, which reduces the laser action opportunities and quality. When using excimer laser vision correction devices, it has been proposed to change the angle of the laser beam incidence on the cornea with a distance from the working area (ablation zone) center to the periphery during the surgery by introducing an optical corrective system based on a lightweight controllable and movable mirror, which allows achieving the coincidence of the direction of the laser beam incidence on the corneal surface with the normal.
The studies have shown that the coincidence of the laser beam incidence on the corneal surface at any point with the normal when using a priori data on the specifics of the patient's eye allows expanding the functional opportunities of excimer laser photoablation, i. e., expand the ablation zone by 30 % and eliminate the possibility of errors caused by the human factor. The technique proposed can be used for excimer laser vision correction according to PRK, LASIK, Femto-LASIK, and other methods. To implement this approach, a patented excimer laser vision correction unit has been proposed with a PCcontrolled optical shaping system comprising galvo motor platforms and galvo mirrors installed on them.
About the Authors
V. A. AlekseevRussian Federation
Studencheskaya str., 7, Izhevsk 426069
V. G. Kostin
Russian Federation
Lenina str., 101, Izhevsk 426000
A. V. Usoltseva
Russian Federation
Studencheskaya str., 7, Izhevsk 426069
V. P. Usoltsev
Russian Federation
Studencheskaya str., 7, Izhevsk 426069
S. I. Yuran
Russian Federation
Address for correspondence: Yuran S.I. – Izhevsk State Agricultural Academy, Studencheskaya str., 11, Izhevsk 426069, Russia
e-mail: yuran-49@yandex.ru
References
1. Balashevich L.I. [Surgical correction of refractive anomalies and accommodation]. Hirurgicheskaya korrekciya anomalij refrakcii i akkomodacii. SPb.: CHelovek Publ., 2009, 296 p.
2. Vestergaard A.H. Past and present of corneal refractive surgery: a retrospective study of long-term results after photorefractive keratectomy and a prospective study of refractive lenticule extraction. Acta Ophthalmol, 2014, vol. 92, pp. 1–21. DOI: 10.1111/aos.12385
3. Kornilovskij I.M. [New technologies of excimer laser surgery of the cornea]. Sovremennye tekhnologii v oftal'mologii [Modern technologies in ophthalmology], 2020, no. 4 (35), pp. 94 (in Russian). DOI: 10.25276/2312-4911-2020-4-70-71
4. Kanski Dzh. [Clinical ophthalmology. A systematic approach]. Klinicheskaya oftal'mologiya. Sistematizirovannyj podhod. Moscow: Logosfera, Elsevier Urban & Partner Publ., 2009, 944 p.
5. Hampton F.R. Refrakcionnaya hirurgiya (Hirurgicheskie tekhniki v oftal'mologii) [Refractive Surgery (Surgical techniques in ophthalmology)]: (eds. S.E. Avetisova, V.P. Ericheva, I.A. Bubnovoj). Moscow: Logosfera Publ., 2016, 248 p.
6. Ehlke Germano Leal, Krueger Ronald R. Laser Vision Correction in Treating Myopia. Asia Pac J. Ophthalmol (Phila), 2016, Nov/Dec. 5(6), pp. 434–437. DOI: 10.1097/APO.0000000000000237
7. Cionni R.J., Hamilton R., Stonecipher K.G. Toric IOLs for irregular astigmatism. Cataract Refract. Surg. Today, 2014, vol. 9, pp. 40–42.
8. Alekseev V.A., Kostin V.G. Usoltseva A.V., Usoltsev V.P. Ustrojstvo dlya eksimer-lazernoj korrekcii zreniya [Device for excimer laser vision correction]. Patent RF, no. 201585, 2020 (in Russian).
9. Artola A., Gala A., Belda J.I., Pérez-Santonja J.J., Rodriguez-Prats J.L., Ruiz-Moreno J.M., Alió J.L. LASIK in myopic patients with dermatological keloids. J. Refract. Surg., 2006, vol. 22 (5), pp. 505–508.
10. Barequet I.S., Hirsh A., Levinger S. Femtosecond thin-flap LASIK for the correction of ametropia after penetrating keratoplasty. J. Refract. Surg., 2010, vol. 26, no. 3, pp. 191–196. 2021. – Т. 12, № 3. – С. 175–182
11. G., Albarran–Diego C., Sakla H., PérezSantonja J.J., Alió J.L. Femtosecond laser in situ keratomileusis after radial keratotomy. J. Cataract Refract. Surg., 2006, vol. 32, no. 8, pp. 1270–1275. DOI: 10.1016/j.jcrs.2006.02.061
12. Buratto L., Brint S. LASIK Surgical Techniques and Compilations. Thorofare, NJ: SLACK, 2000, 624 p.
13. Kachalina G.F., Tahchidi N.H. [Investigation of the smoothness of the ablation surface and thermal processes in the rabbit cornea during the operation of excimer laser installations ‟MicroScan-Visum” and ‟MicroScanCFP”]. Issledovanie gladkosti ablyacionnoj poverhnosti i termicheskih processov v rogovice krolika pri rabote eksimer-lazernyh ustanovok ‟MikroSkan-Vizum” i ‟MikroSkanCFP”. Vestnik RGMU, 2016, no. 2, pp. 50–53 (in Russian).
14. Verma Sh., Hesser Ju., Arba-Mosquera S. Optimum Laser Beam Characteristics for Achieving Smoother Ablations in Laser Vision Correction. Invest Ophthalmol Vis Sci., 2017, Apr. 1, 58(4), pp. 2021–2037. DOI:10.1167/iovs.16-21025
15. Argento C., Valenzuela G., Huck H., Cremona G., Cosentino M.J, Gale M.F. Smoothness of ablation on acrylic by four different excimer lasers. J. Refract Surg., 2001, no. 17 (1), pp. 43–45.
Review
For citations:
Alekseev V.A., Kostin V.G., Usoltseva A.V., Usoltsev V.P., Yuran S.I. Expanding of Excimer Laser Photoablation’s Functionality in Ophthalmology. Devices and Methods of Measurements. 2021;12(3):175-182. https://doi.org/10.21122/2220-9506-2021-12-3-175-182