Designing a Planar Fluxgate Using the PCB Technology
https://doi.org/10.21122/2220-9506-2021-12-2-117-123
Abstract
The development of novel methods, scientific devices and means for measuring magnetic fields generated by ultra-low current is among promising directions in the development of medical equipment and instruments for geodetic surveys and space exploration. The present work is to develop a small sensor capable of detecting weak magnetic fields, which sources are biocurrents, radiation of far space objects and slight fluctuations of the geomagnetic field. Scientists estimate the strength of such magnetic fields as deciles of nanotesla.
The key requirements for the sensors of ultra-low magnetic field are: resolution, noise level in the measurement channel, temperature stability, linearity and repeatability of the characteristics from one produced item to another. The aforementioned characteristics can be achieved by using planar technologies and microelectromechanical systems (MEMS) in such advanced sensors.
The work describes a complete R&D cycle, from creating the computer model of the sensor under study to manufacturing of a working prototype. To assess the effect of the geometry and material properties, the Jiles–Atherton model is implemented which, unlike the majority of the models used, allows considering the non-linearity of the core, its hysteresis properties and influence of residual magnetization.
The dimensions of the developed sensor are 40×20×5 mm, while the technology allows its further diminishment. The sensor has demonstrated the linearity of its properties in the range of magnetic field strength from 0.1 nT to 50 µT for a rms current of excitation of 1.25 mA at a frequency of 30 kHz. The average sensitivity for the second harmonic is 54 µV/nT.
Keywords
About the Authors
A. A. KolomeitsevRussian Federation
Lenin Ave., 30а, Tomsk 634050
I. A. Zatonov
Russian Federation
Lenin Ave., 30а, Tomsk 634050
M. I. Pischanskaya
Russian Federation
Lenin Ave., 30а, Tomsk 634050
P. F. Baranov
Russian Federation
Lenin Ave., 30а, Tomsk 634050
D. P. Ilyaschenko
Russian Federation
Address for correspondence: Ilyaschenko D.P. – Yurga Institute of Technology National Research Tomsk Polytechnic University, Leningradskaya st., 26, Yurga 652055, Russia
e-mail: mita8@rambler.ru
E. V. Verkhoturova
Russian Federation
Lermontov str., 83, Irkutsk 664074
References
1. Ripka P. Magnetic Sensors and Magnetometers. Boston, Artech house, 2000, 494 p.
2. Carr C. The Double Star magnetic fi investigation. Ann. Geophys, 2005, no. 23, pp. 2713− 2732. DOI: 10.5194/angeo-23-2713-2005
3. Can H., Topal U. Design of Ring Core Fluxgate Magnetometer as Attitude Control Sensor for Low and High Orbit Satellites. Journal of Superconductivity and Novel Magnetism March, 2015, vol. 28, no. 3, pp. 1093−1096. DOI: 10.1007/s10948-014-2788-5
4. Johnson M.W., Amin M.H., Gildert S., Lanting T., Hamze F., Dickson N., Harris R., Berkley A.J., Johansson J., Bunyk P., Chapple E.M., Enderud C., Hilton J.P., Karimi K., Ladizinsky E., Ladizinsky N., Oh T., Perminov I., Rich C., Thom M.C., Tolkacheva E., Truncik C.J., Uchaikin S., Wang J., Wilson B., Rose G. Quantum annealing with manufactured spins. Nature, 2011, vol. 473, no. 7346. pp. 194−198. DOI: 10.1038/nature10012
5. Uchaikin S., Likhachev A., Cioata F., Perminov I., Sanghera H., Singh I., Spear P., Chavez P., Han X., Petroff C., Rich C. Sample 3D magnetometer for a dilution refrigerator. Journal of Physics Conference Series, 2012, vol. 400, pp. 052037. DOI: 10.1088/1742-6596/400/5/052037
6. Uchaikin S.V. Fluxgate Magnetometer for Cryogenics. In Proc. of the 21st International Conference on Low Temperature Physics (LT21), Czechoslovak Journal of Physics, 1996, pp. 2809.
7. Sukhanov D.Y. [Magnetic introscopy with a magnetic sensor array]. Izvestiya vishih uchebnih zavedeniy. Phizika [Izvestiya vyshin educational institutions. Physics], 2013, vol. 56, no. 8/2, pp. 23−26 (in Russian).
8. Fagaly R.L. Superconducting quantum interference device instruments and applications. Rev. Sci. Instrum., 2006, vol. 77, no. 10, pp. 101101-101101-45. DOI: 10.1063/1.2354545
9. Shirai Y. Hirao K., Shibuya T., Okawa S., Hasegawa Y., Adachi Y., Sekihara K., Kawabata S. Magnetocardiography using a magnetoresistive sensor array. Int Heart J., 2019, vol. 60, no. 1, pp. 50−54. DOI: 10.1536/ihj.18-002.
10. Karo H., Sasada I., Magnetocardiogram measured by fundamental mode orthogonal fl array. J. Appl. Phys., 2015, vol. 117, no. 17, pp. 17B322. DOI: 10.1063/1.4918958
11. Adachi Y., Higuchi M., Oyama D., Haruta Y., Kawabata S., Uehara G. Calibration for a multichannel magnetic sensor array of a magnetospinography system. IEEE Trans. Magn., 2014, vol. 50, no. 11, pp. 1−4. DOI: 10.1109/TMAG.2014.2326869
12. Harada S., Sasada I., Hang F. Development of a One Dimensional Fluxgate Array and Its Application to Magnetocardiogram Measurements. Electronics and Communications in Japan, Translated from Denki Gakkai Ronbunshi, 2015, vol. 98, no. 4. DOI: 10.1002/ecj.11645
13. Vetoshko P.M., Gusev N.A., Chepurnova D.A., Samoilova E., Zvezdin A., Korotaeva A., Belotelov V. Rat Magnetocardiography Using a Flux-Gate Sensor Based on Iron Garnet Films. Biomed Eng., 2016, vol. 50, pp. 237–240. DOI: 10.1007/s10527-016-9628-9
14. Gusev N.A., Vetoshko P.M., Kuzmichev A.N., Chepurnova D., Samoilova E., Zvezdin A., Korotaeva A., Belotelov V. Ultra-Sensitive Vector Magnetometer for Magnetocardiographic Mapping. Biomed Eng., 2017, vol. 51, pp. 157–161. DOI: 10.1007/s10527-017-9705-8
15. Baranova V.E., Baranov P.F., Muravyov S.V., Uchaikin S. The Production of a Uniform Magnetic Field Using a System of Axial Coils for Calibrating Magnetometers. Meas Tech., 2015, vol. 58, pp. 550–555. DOI: 10.1007/s11018-015-0752-9
16. Baranov P., Borikov V., Ivanova V., Duc B.B., Uchaikin S., Liu C.-Y. Lock-in amplifi with a high common-mode rejection ratio in the range of 0.02 to 100 kHz. ACTA IMEKO, 2019, vol. 8, no. 1. DOI: 10.21014/acta_imeko.v8i1.672
Review
For citations:
Kolomeitsev A.A., Zatonov I.A., Pischanskaya M.I., Baranov P.F., Ilyaschenko D.P., Verkhoturova E.V. Designing a Planar Fluxgate Using the PCB Technology. Devices and Methods of Measurements. 2021;12(2):117-123. https://doi.org/10.21122/2220-9506-2021-12-2-117-123