DEGRADATION OF SOLAR CELLS PARAMETERS FABRICATED ON THE BASIS OF Cu(In,Ga)Se2 SEMICONDUCTOR SOLID SOLUTIONS UNDER ELECTRON IRRADIATION
Abstract
Polycrystalline Cu(In,Ga)Se2 (CIGS) thin films were grown on molybdenum-coated soda-lime glass substrates by co-evaporation of the elements Cu, In, Ga and Se from independent sources. The effect of electron irradiation on the electrical and optical properties of CIGS thin films and solar cells with the structure ZnO:Al/i-ZnO/CdS/CIGS/Mo/glass was studied. It was found that the degradation of the electrical parameters of solar cells (open-circuit voltage, short-circuit current density and efficiency) took place due to the formation of radiation defects (recombination centers) with deep energy levels in the bandgap of CIGS. It was revealed that after electron irradiation intensity of near band-edge luminescence band at about 1,1 eV decreased considerably and bands of luminescence with maxima at 0,93 and 0,75 eV appeared.
About the Authors
A. V. MudryiBelarus
N. Refahati
Belarus
V. D. Zhivulko
Belarus
M. V. Yakushev
Belarus
R. W. Martin
United Kingdom
References
1. Contreras M.A., Mansfield L.M., Egaas B., Li J., Romero M., Noufi R., Rudiger-Voigt E., Mannstadt W. Wide band gap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency. Prog. Photovolt. Appl. Res., 2012, vol. 20, pp. 843–850.
2. Jackson P., Hariskos D., Lotter E., Paetel S., Wuers R., Menner R., Wischmann W., Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin film solar cells beyond 20 %. Prog. Photovolt. Appl. Res., 2011, vol. 19, pp. 894–897.
3. Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D. Solar cells efficiency tables (version 43). Prog. Photovolt. Appl. Res., 2014, vol. 22, pp. 1–9.
4. Jasenek A., Rau U. Defect generation in Cu(In,Ga)Se2 heterojunction solar cells by high-energy electron and proton irradiation. J. Appl. Phys., 2001, vol. 9, pp. 650–658.
5. Mudryi A.V., Gremenok V.F., Ivaniukovich A.V., Yakushev M.V., Feofanov Ya.V. [Radiation defects in thin Cu(In,Ga)Se2 films under high-energy electron irradiation]. Zhurnal prikladnoy spektroskopii, 2005, vol. 72, pp. 805–808 (in Russian).
6. Morioka G., Shimazaki K., Kawakita S., Imaizumi M., Yamaguchi H., Takamoto T., Sato S., Ohshima T., Nakamura Y., Hirako K., Takahashi M. First flight demonstration of film-laminated InGaP/GaAs and CIGS thin film solar cells by JAXA’S small satellite in LEO. Prog. Photovolt. Appl. Res., 2011, vol. 19, pp. 825–833.
7. Gabor A.M., Tuttle J.R., Albin D.S., Contreras M.A., Noufi R. High-efficiency CuInxGa1-xSe2 solar cells made from (Inx, Ga1-x)2Se3 precursor films. Appl. Phys. Lett., 1994, vol. 65, pp. 198–200.
8. Shafarman W.N., Stolt L. Cu(In,Ga)Se2 Sollar Cells: in Handbook of Photovoltaic Science and Engineering. Edited by A. Luque and S. Hegedus. John Wiley and Sons, Ltd., 2003, pp. 567–616.
9. Mudryi A.V., Ivaniukovich A.V., Yakushev M.V., Feofanov Ya.V., Kulikauskas V.S., Chernysh V.S. [Defect generation in chalcopyrite semiconductor thin films Cu(In,Ga)Se2 by proton irradiation]. Poverkhnost’. Rentgenovskiye, sinkhrotronnyye i neytronnyye issledovaniye, 2006, no. 11, pp. 35–38 (in Russian).
10. Karotki A.V., Mudryi A.V., Yakushev M.V., Luckert F., Martin R. [Structural and optical properties of CdS/Cu(In,Ga)Se2 heterostructures irradiated by high-energy electrons]. Zhurnal prikladnoy spektroskopii, 2010, vol. 77, pp. 725 – 731 (in Russian).
11. Hirose Y., Warasawa M., Takakura K., Kimura S., Chichibu S.F., Ohyama H., Sugiyama M. Optical and electrical properties of electron-irradiated Cu(In,Ga)Se2 solar cells. Thin Solid Film, 2011, vol. 519, pp. 7321–7323.
12. Hirose Y., Warasawa M., Tsunoda I., Takakura K., Sugiyama M. Effects of proton irradiation on optical and electrical properties of Cu(In,Ga)Se2 solar cells. Japan. J. Appl. Phys., 2012, vol. 51, pp. 111802-1–111802-4.
13. Grzeta-Plenkovic B., Popovic S., Chuseka B., Santic B. Crystal data for AgGaxIn1-xSe2 and CuGaxIn1-xSe2. Appl. Cryst., 1980, vol. 13, pp. 311–315.
14. Tinoco T., Rincon C., Quintero M., Sanchez Perez G. Phase Diagram and Optical Energy Gaps for CuInyGa1ySe2 Alloys. Phys. Stat. Sol.(a), 1991, vol. 124, pp. 427–434.
15. Friedrich E.J., Fernandez-Ruiz R. Merino J.M., Leon M. X-ray Difraction Data and Rietveld refinement of CuGaxIn1-xSe2 (x = 0.15 and x = 0.50). Power Diffraction, 2010, vol. 25, pp. 253–257.
16. Mudryi A.V., Gremenok V.F., Karotki A.V., Zalesski V.B., Yakushev M.V., Luckert F., Martin R. Structural and optical properties of Cu(In,Ga)Se2 semiconductor compound thin films. Zhurnal prikladnoy spektroskopii, 2010, vol. 77, pp. 400–406 (in Russian).
17. Zhang S.B., Wei S.-H., Zunger A., Katayama-Yoshida H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B, 1998, vol. 57, pp. 9642–9656.
18. Weinert K., Jasenek A., Rau U. Consequence of 3-MeV electron irradiation on the photovoltaic output parameters of Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2003, vol. 431–432, pp. 453–456.
Review
For citations:
Mudryi A.V., Refahati N., Zhivulko V.D., Yakushev M.V., Martin R.W. DEGRADATION OF SOLAR CELLS PARAMETERS FABRICATED ON THE BASIS OF Cu(In,Ga)Se2 SEMICONDUCTOR SOLID SOLUTIONS UNDER ELECTRON IRRADIATION. Devices and Methods of Measurements. 2014;(1):106-114. (In Russ.)