Preview

Algorithm for Control of Unmanned Aerial Vehicles in the Process of Visual Tracking of Objects with a Variable Movement’s Trajectory

https://doi.org/10.21122/2220-9506-2021-12-1-46-57

Abstract

The purpose of the research was to create an algorithm for determining and correcting the output parameters of the navigation module and the flight-navigation complex of unmanned aerial vehicles which provides control of an aviation gyro-stabilized platform with a multispectral optoelectronic system during flight and tracking various objects of observation.

Principles of control of an aviation technical vision system located on an unmanned aerial vehicle on a two-degree gyro-stabilized platform with the possibility of full turn around two perpendicular axes along the course and pitch are considered. Stability of tracking of observation objects at a distance of up to 10000 m is ensured by the use of a multispectral optoelectronic system including a rangefinder, thermal imaging and two visual channels.

Analysis of the object of observation and the method of its support are carried out. An algorithm is proposed for integrating a Global Navigation Satellite System and a strapdown inertial navigation system based on the extended Kalman filter which includes two stages of calculations, extrapolation (prediction) and correction. Specialized software in the FreeRTOS v9.0 environment has been developed to obtain a navigation solution: latitude, longitude and altitude of the unmanned aerial vehicle in the WGS-84 coordinate system, as well as the pitch, heading and roll angles; north, east and vertical components of velocities in the navigation coordinate system; longitudinal, vertical and transverse components of free accelerations and angular velocities in the associated coordinate system based on data from the receiving and measuring module of the Global Navigation Satellite System and data from the 6-axis MEMS sensor STIM300.

About the Authors

A. A. Adnastarontsau
ООО «НТЛаб-ИС»
Belarus

Surganova str., 41, Minsk 220013, Belarus



D. A. Adnastarontsava
ООО «НТЛаб-ИС»
Belarus

Surganova str., 41, Minsk 220013, Belarus



R. V. Fiodortsev
ООО «НТЛаб-ИС»
Belarus

Address for correspondence: Fiodortsev R.V.  LLC "NTLab-IS", Surganova str., 41, Minsk 220013, Belarus

e-mail: feod@gmail.com



D. V. Katser
JSC "Peleng"
Belarus

Makayonka str., 25, Minsk 220114, Belarus



A. Y. Liavonau
JSC "Peleng"
Belarus

Makayonka str., 25, Minsk 220114, Belarus



D. V. Romanov
JSC "Peleng"
Belarus

Makayonka str., 25, Minsk 220114, Belarus



D. N. Tcherniakovski
LLC "NTLab-IS"; LLC "NTLab-Systems"
Belarus

Surganova str., 41, Minsk 220013, Belarus



A. О. Mikhailau
LLC "NTLab-IS"; LLC "NTLab-Systems"
Belarus

Surganova str., 41, Minsk 220013, Belarus



References

1. Obrabotka izobrazheniy v aviatsionnykh sistemakh tekhnicheskogo zreniya [Image processing in aeronautical vision systems]. Ed. Kostyashkina L.N., Nikiforova M.B. М.: FIZMATLIT Publ., 2016, 234 p.

2. Damantsev Ye. Neraskrytyye vozmozhnosti proyekta "Sych". Unikal'nyy udarno-razvedyvatel'nyy kompleks na baze Su-34. "Voyennoye obozreniye". Analitika. [Undiscovered Possibilities of the "Sych" Project. A unique strike and reconnaissance complex based on the Su-34. "Military Review". Analytics]. 31.01.2020 (in Russian).

3. Advisory Circular AC №:20-167A. U.S. Department of Transportation Federal Aviation Administration. 12.06.2016, 104 p.

4. David H. Titterton, John L. Weston. Strapdown Inertial Navigation Technology, 2004, 2nd ed., Radar, sonar, navigations & avionics, 594 p.

5. 5.Paul G. Savage. Strapdown Associates, 2000, vol. 1, 2nd edition, 1556 p.

6. Volkov V.G. Vertolotnyye optiko-elektronnyye sistemy nablyudeniya i razvedki [Helicopter optoelectronic surveillanceandreconnaissancesystems]. Journal"Special Technique", 2001, no. 3 (in Russian). Available at: http:// www.bnti.ru/showart.asp?aid=510&lvl=09.01.&p=1 (accessed 22.02.2021).

7. Makarchenko O.F., Makarchenko F.I., Nilov A.V., Rumyantsev G.N., Sukhov S.V. Sposob uvelicheniya diapazona uglov povorota izdeliya otnositel'no girostabilizirovannoy platformy, ustanovlennoy na izdelii v kardannovom podvese [A method of increasing the range of angles of rotation of the product relative to the gyrotilized platform installed on the product in a gimbal]. Patent RF, no. 2552857, 2015.

8. Burets G.A., Gorokhov M.M., Denisov R.N., Nuzhin A.V., Pleshanov Y.V., Puysha A.E. Optikoelektronnyy sledyashchiy koordinator [Optoelectronic tracking coordinator]. Patent RF, no. 2476826, 2013.

9. Amelin K.S. A method of orienting an ultralight UAVs with a rare update of its position data [Metod oriyentirovaniya sverkhlogkogo BPLA pri redkom obnovlenii dannykh o yego mestopolozhenii]. Saint Petersburg State University, 2014, pp. 3–14 (in Russian). Available at: https://www.math.spbu.ru/user/gran/ soi10_2/Am10_2.pdf (accessed: 22.02.2021).

10. Sozdaniye sistemy tekhnicheskogo zreniya aviatsionnoy, shifr "Sych" [Creation of an aviation technical vision system, code "Sych"]. JSC "Peleng". State rubricator of scientific and technical information SRSTI:59.14.29. from 21.08.2017. Register of scientific research, experimental design and experimental technological work registered in 2017 / ed. A.G. Shumilina. Minsk: State Institution "BelISA" Publ., 2018, 109 p.

11. Lukatsevich K. Tochno na tsel'. Pritsel'nyye kompleksy OAO «Peleng» sootvetstvuyut samym vysokim trebovaniyam. Oboronno-promyshlennyy kompleks Rossii [Right on target. The sighting systems of JSC "Peleng" meet the highest requirements. Defense industrial complex of Russia]. Special information and analytical project. № 2(23), July 2020, 70 p.

12. Bagmut I.A. Nastroyka fil'tra Kalmana v zadache korrektsii inertsial'nykh izmereniy v integrirovannoy navigatsionnoy sisteme [Adjusting the Kalman filter in the problem of correcting inertial measurements in an integrated navigation system]. Bulletin of the National Technical University "KhPI": collection of scientific papers. Thematic issue: Dynamics and strength of machines. Kharkov: NTU "KhPI" Publ., 2011, no. 63, pp. 13‒21 (in Russian).

13. Mkrtchyan V.I. Nastroyka fil'tra Kalmana dlya otsenivaniya oshibki BINS po kursu [Adjusting the Kalman filter for estimating the SINS error at the rate]. Modern science: actual problems of theory and practice. Series: Natural and Technical Sciences,2018, no. 6, pp. 24‒28 (in Russian).

14. N. Al Bitar, Gavrilov A.I. Sravnitel'nyy analiz algoritmov kompleksirovaniya v slabosvyazannoy inertsial'no-sputnikovoy sisteme na osnove obrabotki real'nykh dannykh [Comparative analysis of integration algorithms in a loosely coupled inertial-satellite system based on real data processing]. Gyroscopy and navigation, 2019, vol. 27, no. 3(106), pp. 31‒52 (in Russian). DOI: 10.17285/0869-7035.0001

15. Benkafo A.S., Lobaty A.A. Osobennosti primeneniya fil'trov Kalmana-B'yusi v kompleksakh oriyentatsii i navigatsii [Features of Kalman-Bucy filters application in orientation and navigation complexes]. Belarusian State University of Informatics and Radioelectronics (BSUIR) reports, 2013, no. 5(75), pp. 67‒71 (in Russian).


Review

For citations:


Adnastarontsau A.A., Adnastarontsava D.A., Fiodortsev R.V., Katser D.V., Liavonau A.Y., Romanov D.V., Tcherniakovski D.N., Mikhailau A.О. Algorithm for Control of Unmanned Aerial Vehicles in the Process of Visual Tracking of Objects with a Variable Movement’s Trajectory. Devices and Methods of Measurements. 2021;12(1):46-57. https://doi.org/10.21122/2220-9506-2021-12-1-46-57

Views: 1792


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)