Analysis of Requirements and the Feasible Limit for Error Reduction in Two-Parameter Magnetic Determination of Steels’ Hardness
https://doi.org/10.21122/2220-9506-2020-11-3-236-244
Abstract
All measurements of mechanical properties of materials in the magnetic structural analysis are indirect and relationships between the measured parameters are correlated. An important physical parameter of steel is hardness. An increase in the correlation coefficient R and a reduction in the standard deviation (SD) are achieved when controlling the hardness of steels with two-parameter magnetic methods compared to methods that use a single measured parameter. However, the specific conditions and requirements for application of the two-parameter methods remain unclear. The purpose of this article was to analyze conditions and the achievable error reduction limit for two-parameter indirect determination of steels hardness and to compare those with one-parameter methods.
In particular, we considered the mean Square Deviation (SD), σF , of indirect calculation of the physical quantity F using two measured parameters x1 and x2 that are correlated with F. It was found that reduction of σF is most pronounced when x1 and x2 are inversely correlated with the maximum modulus |R| of the correlation coefficient R between them. The most significant reduction in σF occurs at similar values of the SDs σ1 and σ2 between the true value of F and the values calculated based on the results of indirect measurements of F using
each of the parameters x1 and x2 . The Results of the analysis are confirmed by an example of reduction in SD when determining the hardness of carbon steels by measuring their remanent magnetization and coercive force compared to use any one of these parameters.
This result can be applied to measurements in non-destructive testing and in related fields of physics and technology. The Results of the analysis allow us to compare different parameters for indirect two-parameter determination of a physical quantity, to select the optimal parameters, and to evaluate the minimum achievable measurement error of a physical quantity by a two-parameter method before performing the measurements.
About the Author
S. G. SandomirskiBelarus
Address for correspondence: S.G. Sandomirski – Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus, Akademicheskaya str., 12, Minsk 220072, Belarus
e-mail: sand_work@mail.ru
References
1. Agamirov L.V. Mashinostroenie. Enciklopediya. Fiziko-mekhanicheskie svojstva. Ispytaniya metallicheskih materialov. Materialy v mashinostroenii. [Engineering. Encyclopedia. Materials in mechanical engineering. Physical-mechanical properties. Tests of metallic materials]. Moscow: Mashinostroenie Publ., 2010, vol. 40, razd. 2, 851 p.
2. Sandomirski S.G. [Statistical analysis of the relationship between mechanical properties and hardness of steel 41Cr4 (DIN)]. Aktual'nye voprosy mashinovedeniya. Sbornik nauchnyh trudov [Current issues of machine science. Collection of proceedings. Minsk, OIM NAN Belarusi], 2018, vol. 7, pp. 339–341 (in Russian).
3. Nerazrushajushhij kontrol'. Spravochnik [Nondestructive Testing. Directory]: vol. 8, edited by V.V. Kljuev. Kljuev V.V., Muzhickij V.F., Gorkunov Je.S., Shherbinin V.E. Magnitnye metody kontrolja [Magnetic Methods of Testing]. Moscow: Mashinostroenie Publ., vol. 6: kn. 1, 2006, 848 p.
4. Bida G.V., Nichipuruk A.P. Magnitnye svojstva termoobrabotannyh stalej [Magnetic Properties of HeatTreated Steels ]. Ekaterinburg: Ural branch RAN, 2005, 218 p.
5. Sandomirski S.G. Effect of Measurement Accuracy and Range of Variation of a Physical Quantity on the Correlation Coefficient. Measurement Techniques, 2014, vol. 57, iss. 10, pp. 1113–1120. DOI: 10.1007/s11018-015-0588-3
6. Kostin K.V., Kostin V.N., Smorodinskii Ya.G., Tsar’kova T.P., Somova V.M. , Sazhina E.Yu. Choice of the Parameters and Algorithm for the Magnetic Hardness Testing of Thermally Treated Carbon Steels by the Method of Regression Modeling. Russian Journal of Nondestructive Testing, 2011, vol. 47, iss. 2, pp. 89–95. DOI: 10.1134/S1061830911020094
7. Kostin V.N., Smorodinskii Y.G. Multipurpose Software-Hardware Systems for Active Electromagnetic Testing as a Trend. Russian Journal of Nondestructive Testing, 2017, vol. 53, iss. 7, pp. 493–504. DOI: 10.1134/S1061830917070075
8. Danilevich S.B., Kolesnikov S.S., Palchun Yu.A. Use of Simulation Monitoring for Checking Monitoring and Testing Procedures. Measurement Techniques, 2011, vol. 54, iss. 7, pp. 846–850. DOI: 10.1007/s11018-011-9814-9
9. Zhagora N.A. Vlijanie tochnosti izmerenij na rezul'taty ocenki sootvetstvija [The effect of measurement accuracy on conformity assessment results]. Kontrol' kachestva produkcii [Product quality control], 2016, no. 4, pp. 29–34 (in Russian).
10. Danilevich S.B., Tret'jak V.V. Metrologicheskoe obespechenie dostovernosti rezul'tatov kontrolja [Metrological assurance of the reliability of control results]. Kontrol'. Diagnostika [The control. Diagnostics], 2018, no. 7, pp. 56–60 (in Russian). DOI: 10.14489/td.2018.07.pp.056-060
11. Bida G.V., Stashkov A.N. Multipurpose Use of Magnetic Properties of Steels in Nondestructive Testing of the Quality of Heat-Treated Workpieces. Russian Journal of Nondestructive Testing, vol. 39, iss. 4, 2003, pp. 310 – 316. DOI: 10.1023/B:RUNT.0000009087.64604.82
12. Bida G.V., Nichipuruk A.P. Multiparameter Methods in Magnetic Structuroscopy and Nondestructive Testing of Mechanical Properties of Steels. Russian Journal of Nondestructive Testing, 2007, vol. 43, iss. 8, pp. 493 – 509. DOI: 10.1134/S1061830907080013
13. Mel’gui M.A. Multiparameter Methods in Magnetic Structuroscopy and Instruments for Their Realization (Review): II. The Pulsed Magnetic Multiparameter Method and IMA-M Instrument for Its Performance. Russian Journal of Nondestructive Testing, 2015, vol. 51, iss. 3, pp. 138–145. DOI: 10.1134/S1061830915030055
14. Matyuk V.F. Pribory magnitnoj strukturoskopii na osnove lokal'nogo ciklicheskogo impul'snogo peremagnichivanija [Instruments of magnetic structuroscopy based on the local cyclic pulse magnetization]. Nerazrushajushhij kontrol' i diagnostika [Non-Destructive Testing and Diagnostics], 2013, no. 1, pp. 3–27 (in Russian).
15. Burak V.A, Korotkevich Z.M. Informativnye parametry dlja magnitnogo kontrolja kachestva otpuska instrumental'noj uglerodistoj stali U8A [Informative parameters for magnetic testing grade of tempering tool carbon steel У8А]. Nerazrushajushhij kontrol' i diagnostika [Non-Destructive Testing and Diagnostics], 2013, no. 4, pp. 29–39 (in Russian).
16. Osipov A.A., Burak B.A., Korotkevich M., Schastnyj A.S. Ocenka regressionnyh mnogoparametrovyh modelej v zadachah magnitnogo nerazrushajushhego kontrolja [Evaluation of regression multiparameter models in problems of magnetic non-destructive testing]. Nerazrushajushhij kontrol' i diagnostika [Non-Destructive Testing and Diagnostics], 2018, no. 4, pp. 32–44 (in Russian).
17. Sandomirski S.G. Analysis of the Systematic Error When Measuring the Magnetization of Steels in the Coercive Recovery Process. Measurement Techniques, 2013, vol. 56, iss. 2, pp. 195–200. DOI: 10.1007/s11018-013-0179-0
18. Sandomirski S.G. Application of Magnetic Information Parameters for Nondestructive Testing of the Hardness of Medium-Carbon Alloy Steels. Measurement Techniques, 2019, vol. 62, iss. 8, pp. 722–728. DOI: 10.1007/s11018-019-01685-z
19. Kostin V.N., Osintseva A.A., Sazhina E.Yu. Improving Reliability of Magnetic Testing Data on Strength Properties of not-Rolled Pipes from 37G2S Steel. Russian Journal of Nondestructive Testing, 2002, vol. 38, iss. 12, pp. 909–933. DOI: 10.1023/A:1023813108082
20. Obuhov I.V. Sluchajnye pogreshnosti izmerenij: Uchebnoe posobie [Random Measurement Errors: Study Guide]. Moscow: Knizhnyj dom "LIBROKOM", 2017, 80 p.
21. Novickij P.V., Zograf I.A. Ocenka pogreshnostej rezul'tatov izmerenij [Estimation of errors of measurement results]. Leningrad: Jenergoatomizdat, 1985, 248 p.
22. Mastjaeva I.N., Semenihina O.N. Chislennye metody [Numerical Methods]. Moscow: Moskovskij mezhdunarodnyj institut jekonometriki, informatiki, finansov i prava, 2004, 103 p.
Review
For citations:
Sandomirski S.G. Analysis of Requirements and the Feasible Limit for Error Reduction in Two-Parameter Magnetic Determination of Steels’ Hardness. Devices and Methods of Measurements. 2020;11(3):236-244. https://doi.org/10.21122/2220-9506-2020-11-3-236-244