Dual Wavelength Chirped Pulse Regenerative Amplifier Based on Yb3+:LuAlO3 Crystal for Terahertz Applications
https://doi.org/10.21122/2220-9506-2020-11-1-7-14
Abstract
Compact diode-pumped chirped pulse regenerative amplifier systems with pulse repetition rate of hundreds kilohertz based on Yb3+-doped crystals are of practical importance for wide range of applications such as materials processing, medicine, scientific research, etc. The aim of this work was to study the Yb3+:LuAlO crystal based dual wavelength chirped pulse regenerative amplifier.
Perovskite-like aluminate crystals have unique spectroscopic properties that allowed to use amplifier active element gain spectrum as an amplitude filter for amplified pulse spectrum and even obtained dual wavelength amplification without any additional components.
In our work a simple way to obtain dual-wavelength operation of chirped pulse regenerative amplifier by using the active medium gain spectrum as an amplitude filter for the formation of the amplified pulses spectrum demonstrated for the first time to our knowledge. Maximum output power of 5.4 W of chirped pulses (3.8 W after compression) and optical-to-optical efficiency of 22.5 % have been obtained for Yb:LuAP E//b-polarization at 200 kHz repetition rate. Compressed amplified pulse duration was about 708 fs while separate spectral components durations were 643 fs and 536 fs at 1018.3 nm and 1041.1 nm central wavelengths, respectively. Performed investigations show high potential of Yb3+:LuAP crystals as active elements of compact diode pumped chirped pulse regenerative amplifiers
About the Authors
A. S. RudenkovBelarus
Address for correspondence: Alexander Rudenkov – Center for Optical Materials and Technologies, Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus. e-mail: a.rudenkov@bntu.by
V. E. Kisel
Belarus
Viktor Kisel, Center for Optical Materials and Technologies
Nezavisimosty Ave., 65, Minsk 220013, Belarus
A. S. Yasukevich
Belarus
Anatol Yasukevich, Center for Optical Materials and Technologies
Nezavisimosty Ave., 65, Minsk 220013, Belarus
K. L. Hovhannesyan
Armenia
Karine Hovhannesyan
0203, Ashtarak-2, Armenia
A. G. Petrosyan
Armenia
Ashot Petrosyan
0203, Ashtarak-2, Armenia
N. V. Kuleshov
Belarus
Nikolai Kuleshov, Center for Optical Materials and Technologies
Nezavisimosty Ave., 65, Minsk 220013, Belarus
References
1. Schneider W., Ryabov A., Lombosi Cs., Metzger T., Major Zs., Fülöp J.A., Baum P. 800-fs, 330μJ pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3. Opt. Lett., 2014, vol. 39, iss. 23, pp. 6604‒6607. DOI: 10.1364/OL.39.006604
2. Koustuban Ravi, Wenqian Ronny Huang, Sergio Carbajo, Emilio A. Nanni, Damian N. Schimpf, Erich P. Ippen, and Franz. X. Kärtner. Theory of terahertz generation by optical rectification using tilted-pulsefronts. Opt. Express, 2015, vol. 23, iss. 4, pp. 5253‒5276. DOI: 10.1364/OE.23.005253
3. Meyer F., Hekmat N., Mansourzadeh S., Fobbe F., Aslani F., Hoffmann M., Saraceno C.J. Optical rectification of a 100 W average power mode-locked thindisk oscillator. Opt. Lett., 2018, vol. 43, pp. 5909‒5912. DOI: 10.1364/OL.43.005909
4. Ding Y.J. Generation of quasi-single-cycle THz pulses based on broadband-phase-matched differencefrequency generation: high conversion efficiencies and output powers. Conference on Lasers and Electro-Optics, 2005, Baltimore, MD, vol. 2, pp. 1453−1455. DOI: 10.1109/CLEO.2005.202156
5. Saito K., Tanabe T., Oyama Y. THz-Wave Generation from GaP THz Photonic Crystal Waveguides under Difference-Frequency Mixing. Optics and Photonics Journal, 2012, vol. 2, no. 3, pp. 201‒205. DOI: 10.4236/opj.2012.223030
6. Zhao Pu, Ragam Srinivasa, Yujie J. Ding and Ioulia B. Zotova. Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses. Optics Letters, 2011, vol. 36, iss. 24, pp. 4818‒4820. DOI: 10.1364/OL.36.004818
7. Bezotosnyi V.V., Cheshev E.A., Gorbunkov M.V., Koromyslov A.L., Krokhin O.N., Mityagin Yu.A., Popov Yu.M., Savinov S.A., Tunkin V.G. Coherent THz Repetitive Pulse Generation in a GaSe Crystal by Dualwavelength Nd:YLF Laser. Physics Procedia, 2015, vol. 72, pp. 405−410. DOI: 10.1016/j.phpro.2015.09.075
8. Schaar J.E., Vodopyanov K.L., Fejer M.M. Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phasematched GaAs. Opt. Lett., 2007, vol. 32, pp. 1284‒1286. DOI: 10.1364/OL.32.001284
9. Walsh David A., Browne Peter G., Dunn Malcolm H., Rae Cameron F. Intracavity parametric generation of nanosecond terahertz radiation using quasi-phasematching. Opt. Express, 2010, vol. 18, pp. 13951‒13963. DOI: 10.1364/OE.18.013951
10. Hoffmann S., Hofmann M.R. Generation of Terahertz radiation with two color semiconductor lasers. Laser & Photon. Rev., 2007, vol. 1, iss. 1, pp. 44–56. DOI: 10.1002/lpor.200710004
11. Alexander Rudenkov, Viktor Kisel, Anatol Yasukevich, Karine Hovhannesyan, Ashot Petrosyan, Nikolay Kuleshov. Spectroscopy and continuous wave laser performance of Yb3+:LuAlO3 crystal. Opt. Lett., 2016, vol. 41, pp. 5805‒5808. DOI: 10.1364/OL.41.005805
12. Alexander Rudenkov, Viktor Kisel, Anatol Yasukevich, Karine Hovhannesyan, Ashot Petrosyan, Nikolai Kuleshov. Compact 999.6 nm Аctively Q-Switched Yb3+:LuAlO3 Laserfor Laser-Induced Breakdown Spectroscopy. Devices and Methods of Measurements, 2019, vol. 10, no. 2, рр. 119–127. DOI: 10.21122/2220-9506-2019-10-2-119-127
13. Alexander Rudenkov, Viktor Kisel, Anatol Yasukevich, Karine Hovhannesyan, Ashot Petrosyan, and Nikolay Kuleshov. Yb3+:LuAlO3 crystal as a gain medium for efficient broadband chirped pulse regenerative amplification. Opt. Lett., 2017, vol. 42, pp. 2415‒2418. DOI:10.1364/OL.42.002415
14. Petrosyan A.G., Popova V.F., Gusarov V.V., Shirinyan G.O., Pedrini C., Lecoq P. The Lu2O3– Al2O3 system: Relationships for equilibrium-phase and supercooled states. Journal of Crystal Growth, 2006, vol. 293, pp. 74‒77. DOI: 10.1016/j.jcrysgro.2006.05.017
15. Petrosyan A.G., Popova V., Ugolkov V.L., Romanov D.P., Ovanesyan K.L. A phase stability study in the Lu2O3-Al2O3 system. J. Crystal Growth, 2013, vol. 377, pp. 178–183. DOI: 10.1016/j.jcrysgro.2013.04.054
16. Kühn Henning, Fredrich-Thornton Susanne T., Kränkel Christian, Peters Rigo, Petermann Klaus. Model for the calculation of radiation trapping and description of the pinhole method. Opt. Lett., 2007, vol. 32, pp. 1908‒1910. DOI: 10.1364/OL.32.001908
17. Petrosyan A.G. Crystal growth of laser oxides in the vertical Bridgman configuration. Journal of Crystal Growth, 1994, vol. 139, pp. 372‒392. DOI: 10.1016/0022-0248(94)90190-2
18. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A., 1976, vol. 32, pp. 751‒767. DOI: 10.1107/S0567739476001551
19. Sumida D.S., Fan T.Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Opt. Lett., 1994, vol. 19, pp. 1343‒1345. DOI: 10.1364/OL.19.001343
20. Boulon G., Guyot Y., Canibano H., Hraiech S., Yoshikawa A. Characterization and comparison of Yb3+doped YA1O3 perovskite crystals (Yb:YAP) with Yb3+doped Y3Al5O12 garnet crystals (Yb:YAG) for laser application. J. Opt. Soc. Am. B, 2008, vol. 25, pp. 884‒896. DOI: 10.1364/JOSAB.25.000884
21. Yasyukevich A.S., Shcherbitskii V.G., Kisel V.E., Mandrik A.V., Kuleshov N.V. Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers. Journal of Applied Spectroscopy, 2004, vol. 71, no. 2, pp. 202‒208. DOI: 10.1023/B:JAPS.0000032875.04400.a0
22. Viktor E. Kisel, Sergey V. Kurilchik, Anatol S. Yasukevich, Sergey V. Grigoriev, Sofya A. Smirnova, and Nikolay V. Kuleshov. Spectroscopy and femtosecond laser performance of Yb3+:YAlO3 crystal. Opt. Lett., 2008, vol. 33, pp. 2194‒2196. DOI: 10.1364/OL.33.002194
Review
For citations:
Rudenkov A.S., Kisel V.E., Yasukevich A.S., Hovhannesyan K.L., Petrosyan A.G., Kuleshov N.V. Dual Wavelength Chirped Pulse Regenerative Amplifier Based on Yb3+:LuAlO3 Crystal for Terahertz Applications. Devices and Methods of Measurements. 2020;11(1):7-14. https://doi.org/10.21122/2220-9506-2020-11-1-7-14