Controlling of Differential Resistance of p–n-Junctions of Bipolar Transistor in Active Mode by Method of Impedance Spectroscopy
https://doi.org/10.21122/2220-9506-2019-10-3-253-262
Abstract
Controlling of parameters of manufactured transistors and interoperational controlling during their production are necessary conditions for production of competitive products of electronic industry. Traditionally for controlling of bipolar transistors the direct current measurements and registration of capacity-voltage characteristics are used. Carrying out measurements on alternating current in a wide interval of frequencies (20 Hz–30 MHz) will allow to obtain additional information on parameters of bipolar transistors. The purpose of the work is to show the possibilities of the method of impedance spectroscopy for controlling of differential resistance of p–n-junctions of the bipolar p–n–p-transistor in active mode.
The KT814G p–n–p-transistor manufactured by JSC “INTEGRAL” was studied by the method of impedance spectroscopy. The values of differential electrical resistance and capacitance for base–emitter and base–collector p–n-junctions are defi at direct currents in base from 0.8 to 46 µA.
The results of the work can be applied to elaboration of techniques of fi checking of discrete bipolar semiconductor devices.
Keywords
About the Authors
N. I. GorbachukBelarus
Address for correspondence: N.I. Gorbachuk – Belarusian State University, Nezavisimosti Ave., 4, Minsk 220030, Belarus e-mail: gorbachuk@bsu.by
N. A. Poklonski
Belarus
Nezavisimosti Ave., 4, Minsk 220030
Ya. N. Marochkina
Belarus
Nezavisimosti Ave., 4, Minsk 220030
S. V. Shpakovski
Belarus
ul. Kazintsa, 121A, Minsk, 220108 Belarus
References
1. Ng K.K. Complete Guide to Semiconductor Devices. New York, Wiley, 2002, xxiv+740 p.
2. Sze S.M., Lee M.K. Semiconductor Devices: Physics and Technology, New York, Wiley, 2012, x+578 p.
3. Nicollian E.H., Goetzberger A. The Si-SiO2 interface – electrical properties as determined by metalinsulator-silicon conductance technique. Bell Syst. Tech. J., 1967, vol. 46, no. 6, pp. 1055–1133. DOI: 10.1002/j.1538-7305.1967.tb01727.x
4. Baumann P. Parameterextraktion bei Halbleiterbauelementen. Simulation mit PSPICE, Wiesbaden, Springer Vieweg, 2019, x+191 p. DOI: 10.1007/978-3-658-26574-8
5. Poklonski N.A., Gorbachuk N.I., Shpakovski S.V., Filipenia V.A., Skuratov V.A., Wieck A. Kinetics of reverse resistance recovery of silicon diodes: The role of the distance the metallurgical p+n-junction–defect layer formed by 250 MeV krypton implantation. Physica B, 2009, vol. 404, no. 23–24, pp. 4667–4670. DOI: 10.1016/j.physb.2009.08.129
6. Impedance Spectroscopy: Theory Experiment, and Applications, ed. by E. Barsoukov, J.R. Macdonald. Hoboken, Wiley, 2018, xviii+528 p. DOI: 10.1002/9781119381860
7. Cho C.-H., Kim B.-H., Kim S.-K., Park S.-J. Characterization of electronic structure of silicon nanocrystals in silicon nitride by capacitance spectroscopy. Appl. Phys. Lett., 2010, vol. 96, no. 22, pp. 223110 (3 pp.). DOI: 10.1063/1.3431572
8. Poklonskii N.A., Gorbachuk N.I., Pototskii I.V., Trofimchuk D.A. Electrical conductivity of composite materials based on fine-particle silicon near the metal– insulator transition. Inorg. Mater., 2004, vol. 40, no. 11, pp. 1133–1137. DOI: 10.1023/B:INMA.0000048209.93137.12
9. Winterhalter J., Ebling D.G., Maier D., Honerkamp J. Analysis of admittance data: Comparison of a parametric and a nonparametric method. J. Comput. Phys., 1999, vol. 153, no. 1, pp. 139–159. DOI: 10.1006/jcph.1999.6269
10. Lauwaert J.,Decock K.,Khelifi S., Burgelman M. A simple correction method for series resistance and inductance on solar cell admittance spectroscopy. Sol. Energ. Mat. Sol. C., 2010, vol. 94, no. 6, pp. 966–970. DOI: 10.1016/j.solmat.2010.01.025
11. Poklonski N.A., Gorbachuk N.I., Shpakovski S.V., Filipenia V.A., Lastovskii S.B., Skuratov V.A., Wieck A., Markevich V.P. Impedance and barrier capacitance of silicon diodes im-planted with high-energy Xe ions. Microelectron. Reliab., 2010, vol. 50, no. 6, pp. 813–820. DOI: 10.1016/j.microrel.2010.02.007
12. Poklonski N.A., Gorbachuk N.I., Shpakovski S.V., Wieck A. Equivalent circuit of silicon diodes subjected to high-fluence electron irradiation. Tech. Phys., 2010, vol. 55, no. 10, pp. 1463–1471. DOI: 10.1134/S1063784210100117
13. Volkov A.S., Koposov G.D., Perfil’ev R.O., Tyagunin A.V. Analysis of еxperimental results by the Havriliak–Negami model in dielectric spectroscopy. Opt. Spectrosc., 2018, vol. 124, no. 2, pp. 202–205. DOI: 10.1134/S0030400X18020200
14. Kowal J., Hente D., Sauer D.U. Model parameterization of nonlinear devices using impedance spectroscopy. IEEE T. Instrum. Meas., 2009, vol. 58, no. 7, pp. 2343–2350. DOI: 10.1109/TIM.2009.2013927
15. Kavasoglu A.S., Kavasoglu N., Oktik S. Simulation for capacitance correction from Nyquist plot of complex impedance–voltage characteristics. Solid-State Electron., 2008, vol. 52, no. 6, pp. 990–996. DOI: 10.1016/j.sse.2008.02.004
16. Campbell D., Chilingarov A., Sloan T. Evaluation of possible equivalent circuits for the description of the CV characteristics of heavily irradiated Si diodes. Nucl. Instrum. Meth. A, 2005, vol. 552, no. 1–2, pp. 152–157. DOI: 10.1016/j.nima.2005.06.024
Review
For citations:
Gorbachuk N.I., Poklonski N.A., Marochkina Ya.N., Shpakovski S.V. Controlling of Differential Resistance of p–n-Junctions of Bipolar Transistor in Active Mode by Method of Impedance Spectroscopy. Devices and Methods of Measurements. 2019;10(3):253-262. (In Russ.) https://doi.org/10.21122/2220-9506-2019-10-3-253-262