Preview

Controlling of Differential Resistance of p–n-Junctions of Bipolar Transistor in Active Mode by Method of Impedance Spectroscopy

https://doi.org/10.21122/2220-9506-2019-10-3-253-262

Abstract

Controlling of parameters of manufactured transistors and interoperational controlling during their production are necessary conditions for production of competitive products of electronic industry. Traditionally for controlling of bipolar transistors the direct current measurements and registration of capacity-voltage characteristics are used. Carrying out measurements on alternating current in a wide interval of frequencies (20 Hz–30 MHz) will allow to obtain additional information on parameters of bipolar transistors. The purpose of the work is to show the possibilities of the method of impedance spectroscopy for controlling of differential resistance of p–n-junctions of the bipolar p–n–p-transistor in active mode.

The KT814G p–n–p-transistor manufactured by JSC “INTEGRAL” was studied by the method of impedance spectroscopy. The values of differential electrical resistance and capacitance for baseemitter and basecollector p–n-junctions are defi at direct currents in base from 0.8 to 46 µA.

The results of the work can be applied to elaboration of techniques of fi checking of discrete bipolar semiconductor devices.

About the Authors

N. I. Gorbachuk
Belarusian State University
Belarus

Address for correspondence: N.I. Gorbachuk – Belarusian State University, Nezavisimosti Ave., 4, Minsk 220030, Belarus      e-mail: gorbachuk@bsu.by



N. A. Poklonski
Belarusian State University
Belarus
Nezavisimosti Ave., 4, Minsk 220030


Ya. N. Marochkina
Belarusian State University
Belarus
Nezavisimosti Ave., 4, Minsk 220030


S. V. Shpakovski
“INTEGRAL” JSC
Belarus

ul. Kazintsa, 121A, Minsk, 220108 Belarus



References

1. Ng K.K. Complete Guide to Semiconductor Devices. New York, Wiley, 2002, xxiv+740 p.

2. Sze S.M., Lee M.K. Semiconductor Devices: Physics and Technology, New York, Wiley, 2012, x+578 p.

3. Nicollian E.H., Goetzberger A. The Si-SiO2 interface – electrical properties as determined by metalinsulator-silicon conductance technique. Bell Syst. Tech. J., 1967, vol. 46, no. 6, pp. 1055–1133. DOI: 10.1002/j.1538-7305.1967.tb01727.x

4. Baumann P. Parameterextraktion bei Halbleiterbauelementen. Simulation mit PSPICE, Wiesbaden, Springer Vieweg, 2019, x+191 p. DOI: 10.1007/978-3-658-26574-8

5. Poklonski N.A., Gorbachuk N.I., Shpakovski S.V., Filipenia V.A., Skuratov V.A., Wieck A. Kinetics of reverse resistance recovery of silicon diodes: The role of the distance the metallurgical p+n-junction–defect layer formed by 250 MeV krypton implantation. Physica B, 2009, vol. 404, no. 23–24, pp. 4667–4670. DOI: 10.1016/j.physb.2009.08.129

6. Impedance Spectroscopy: Theory Experiment, and Applications, ed. by E. Barsoukov, J.R. Macdonald. Hoboken, Wiley, 2018, xviii+528 p. DOI: 10.1002/9781119381860

7. Cho C.-H., Kim B.-H., Kim S.-K., Park S.-J. Characterization of electronic structure of silicon nanocrystals in silicon nitride by capacitance spectroscopy. Appl. Phys. Lett., 2010, vol. 96, no. 22, pp. 223110 (3 pp.). DOI: 10.1063/1.3431572

8. Poklonskii N.A., Gorbachuk N.I., Pototskii I.V., Trofimchuk D.A. Electrical conductivity of composite materials based on fine-particle silicon near the metal– insulator transition. Inorg. Mater., 2004, vol. 40, no. 11, pp. 1133–1137. DOI: 10.1023/B:INMA.0000048209.93137.12

9. Winterhalter J., Ebling D.G., Maier D., Honerkamp J. Analysis of admittance data: Comparison of a parametric and a nonparametric method. J. Comput. Phys., 1999, vol. 153, no. 1, pp. 139–159. DOI: 10.1006/jcph.1999.6269

10. Lauwaert J.,Decock K.,Khelifi S., Burgelman M. A simple correction method for series resistance and inductance on solar cell admittance spectroscopy. Sol. Energ. Mat. Sol. C., 2010, vol. 94, no. 6, pp. 966–970. DOI: 10.1016/j.solmat.2010.01.025

11. Poklonski N.A., Gorbachuk N.I., Shpakovski S.V., Filipenia V.A., Lastovskii S.B., Skuratov V.A., Wieck A., Markevich V.P. Impedance and barrier capacitance of silicon diodes im-planted with high-energy Xe ions. Microelectron. Reliab., 2010, vol. 50, no. 6, pp. 813–820. DOI: 10.1016/j.microrel.2010.02.007

12. Poklonski N.A., Gorbachuk N.I., Shpakovski S.V., Wieck A. Equivalent circuit of silicon diodes subjected to high-fluence electron irradiation. Tech. Phys., 2010, vol. 55, no. 10, pp. 1463–1471. DOI: 10.1134/S1063784210100117

13. Volkov A.S., Koposov G.D., Perfil’ev R.O., Tyagunin A.V. Analysis of еxperimental results by the Havriliak–Negami model in dielectric spectroscopy. Opt. Spectrosc., 2018, vol. 124, no. 2, pp. 202–205. DOI: 10.1134/S0030400X18020200

14. Kowal J., Hente D., Sauer D.U. Model parameterization of nonlinear devices using impedance spectroscopy. IEEE T. Instrum. Meas., 2009, vol. 58, no. 7, pp. 2343–2350. DOI: 10.1109/TIM.2009.2013927

15. Kavasoglu A.S., Kavasoglu N., Oktik S. Simulation for capacitance correction from Nyquist plot of complex impedance–voltage characteristics. Solid-State Electron., 2008, vol. 52, no. 6, pp. 990–996. DOI: 10.1016/j.sse.2008.02.004

16. Campbell D., Chilingarov A., Sloan T. Evaluation of possible equivalent circuits for the description of the CV characteristics of heavily irradiated Si diodes. Nucl. Instrum. Meth. A, 2005, vol. 552, no. 1–2, pp. 152–157. DOI: 10.1016/j.nima.2005.06.024


Review

For citations:


Gorbachuk N.I., Poklonski N.A., Marochkina Ya.N., Shpakovski S.V. Controlling of Differential Resistance of p–n-Junctions of Bipolar Transistor in Active Mode by Method of Impedance Spectroscopy. Devices and Methods of Measurements. 2019;10(3):253-262. (In Russ.) https://doi.org/10.21122/2220-9506-2019-10-3-253-262

Views: 4417


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)