Preview

Devices and Methods of Measurements

Advanced search

Angular Photometry of Biological Tissue by Ellipsoidal Reflector Method

https://doi.org/10.21122/2220-9506-2019-10-2-160-168

Abstract

Angular measurements in optics of biological tissues are used for different applied spectroscopic task for roughness surface control, define of refractive index and for research of optical properties. Purpose of the research is investigation of the reflectance of biologic tissues by the ellipsoidal reflector method under the variable angle of the incident radiation.

The research investigates functional features of improved photometry method by ellipsoidal reflectors. The photometric setup with mirror ellipsoid of revolution in reflected light was developed. Theoretical foundations of the design of an ellipsoidal reflector with a specific slot to ensure the input of laser radiation into the object area were presented. Analytical solution for calculating the angles range of incident radiation depending on the eccentricity and focal parameter of the ellipsoid are obtained. Also created the scheme of image processing at angular photometry by ellipsoidal reflector.

The research represents results of experimental series for samples of muscle tissues at wavelengths 405 nm, 532 nm, 650 nm. During experiment there were received photometric images on the equipment with such parameters: laser beam incident angles range 12.5–62.5°, ellipsoidal reflector eccentricity 0.6, focal parameter 18 mm, slot width 8 mm.

The nature of light scattering by muscle tissues at different wavelengths was represented by graphs for the collimated reflection area. The investigated method allows qualitative estimation of influence of internal or surface layers of biologic tissues optical properties on the light scattering under variable angles of incident radiation by the shape of zone of incident light.

About the Authors

M. A. Bezuglyi
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
Ukraine

Address for correspondence: M.A. Bezuglyi – National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy Ave., 37, Kiev 03056, Ukraine     e-mail: mikhail_bezuglyy@ukr.net



N. V. Bezuglaya
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
Ukraine


A. V. Ventsuryk
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
Ukraine


K. P. Vonsevych
National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute»
Ukraine


References

1. Ghabara T. Study of the emissivity of rough surfaces periodic using the method of coupled waves analysis (CWA) compared with method of geometrical optics approximation (GOA). Natural Science, 2011, no.3(01), рp. 57–64. DOI: 10.4236/ns.2011.31008

2. Nazarov Yu.F., Shkilko A.M., Tihonenko V.V., Kompaneec I.V. [Metals and alloys surface roughness investigation and control methods]. Zhurnal fiziki i inzhenerii poverhnosti [Journal of surface physics and engineering], 2007, no. 3–4(5), рp. 207–216 (in Russian).

3. Szewczenko J., Szewczenko J., Jaglarz J., Basiaga М., Kurzyk J., Paszenda Z. Optical methods applied in thickness and topography testing of passive layers on implantable titanium alloys. Optica Applicata, 2013, no. 1(43), рp. 173–180. DOI: 10.5277/oa130121

4. Feidenhans'l N.A., Hansen P.E., Pilny L., Madsen M.H., Bissacco G., Petersen J.C., Taboryski R.J. Comparison of optical methods for surface roughness characterization. Measurement Science and Technology, 2015, no. 8(26), рp. 085208. DOI: 10.1088/0957-0233/26/8/085208

5. Svitasheva S.N. Experimental Study of Polarization Properties of Rough Surface. Electrical and Electronic Engineering, 2012, no. 2(6), рp. 403–408. DOI: 10.5923/j.eee.20120206.10

6. Tuchin V.V. Opticheskaya biomeditsinskaya diagnostika v 2-h tomah. [Optical biomedical diagnostics, In 2 parts. Part. 1]. Translated from English, Moscow: Physmathlit, 2007, 560 p.

7. Bashkatov A.N., Genina E.A., Tuchin V.V. Chapter 5. Tissue Optical Properties in Handbook of Biomedical Optics. Taylor & Francis Group, LLC, CRC Press Inc., 2011, 37 p.

8. Tuan Vo-Dinh. Biomedical Photonics Handbook II Vol. USA: CRC Press LLC, 2003, 889 p.

9. Genina E. Metody biofotoniki. Fototerapiya [Methods of biophotonics: Phototherapy]. Saratov: Novyi Veter Publ., 2012, 119 p.

10. Litvinova K.S., Rafailov I.E., Dunaev A.V., Sokolovski S.G., Rafailov E.U. Non-invasive biomedical research and diagnostics enabled by innovative compact lasers. Progress in Quantum Electronics, 2017, vol. 56, рp. 1–14. DOI: 10.1016/j.pquantelec.2017.10.001

11. Rogatkin D.A., Lapaeva L.G. Prospects for Development of Noninvasive Spectrophotometric Medical Diagnosis. Biomedical Engineering, 2003, no. 4(37), рp. 217–222. DOI: 10.1023/B:BIEN.0000003304.00591.e7

12. Rogatkin D.A., Lapaeva L.G., Bychenkov O.A., Tereshchenko S.G., Shumskii V.I. Principal sources of errors in noninvasive medical spectrophotometry. Part 1. Physicotechnical sources and factors of errors. Measurement Techniques, 2013, no. 2(56), рр. 201 – 210.

13. Liemert A., Kienle A. Comparison between radiative transfer theory and the simplified spherical harmonics approximation for a semi-infinite geometry. Optics Letters, 2011, vol. 36, рp. 4041–4043. DOI: 10.1364/OL.36.004041

14. Gantria M., Trabelsib H., Bensalahb R., Sedikia E. Solution of a Radiative Transfer Problem in a Biological Tissue. An Optical Tomography Model. Proceedings of AIP Conference Proceedings 935, 237, 2007. DOI: https://doi.org/10.1063/1.2795420

15. Pavlov S., Kozlovska T., Vaselenko V. Optykoelektronni zasoby diagnostuvannia patologii liudyny, povyazanyh iz peryferychnym krovoobigom. Monografiia [Optoelectronic devices for the diagnosis of human pathologies associated with peripheral circulation: Monography]. Vinnytsia: VNTU, 2014, 140 p.

16. Zhao Y., Argyropoulos Ch., Hao Ya. Fullwave finite-difference time-domain simulation of electromagnetic cloaking structures. Optics Express, 2008, no. 16(9), рp. 6717–6730. DOI: 10.1364/OE.16.006717

17. Karagounis G., De Zutter D., Vande Ginste D. Full-wave simulation of optical waveguides via truncation in the method of moments using PML absorbing boundary conditions. Opt. Express, 2016, no. 24(25), рp. 28326– 28336. DOI:10.1364/OE.24.028326

18. Lu Yu, Tian Ji., Cong W., Wang Ge, Yang W., Qin Ch., Xu M. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. Physics in Medicine and Biology, 2007, no. 52(15), рp. 4497–4512. DOI: 10.1088/0031-9155/52/15/009

19. Lapeer R.J., Gassona P.D., Karri V. Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Progress in Biophysics and Molecular Biology, 2010, no. 103(2–3), рp. 208–216. DOI: 10.1016/j.pbiomolbio.2010.09.013

20. Bezuglaya N.V., Bezuglyi M.A., Chmyr Yu.V. Spatial fluxing biometry of environments by ellipsoidal reflectors. Electronics and Communications, 2014, no. 83(6), рp. 87–93. (in Ukrainian)

21. Bezuglyi M., Bezuglaya N., Viruchenko A. On the possibility of ellipsoidal photometry and Monte Carlo simulation to spatial analysis of biological media. Proceedings of Electronics and nanotechnology ELNANO-2017, 2017, рp. 321–325. DOI: 10.1109/ELNANO.2017.7939771

22. Bezuglyi M.A., Bezuglaya N.V., Helich I.V. Ray tracing in ellipsoidal reflectors for optical biometry of media. Appl Opt., 2017, no. 56(30), рp. 8520–8526. DOI: 10.1364/AO.56.008520

23. Passos D., Hebden J.C., Pinto P.N., Guerra R. Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution. Biomed. Opt., 2005, no. 10, рp. 1–11. DOI: 10.1117/1.2139971

24. Jacques S.L. Optical properties of biological tissues: a review. Phys. Med. Biol., 2013, no. 58, рp. R37– R61. DOI: 10.1088/0031-9155/58/11/R37

25. Hall G., Jacques S.L., Eliceiri K.W., Campagnola P.J. Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient. Biomedical optics express, 2012, no. 3(11), рp. 2707–2719. DOI: 10.1364/BOE.3.002707

26. Robkamp D., Truffer F., Bolay S., Geiser M. Forward scattering measurement device with a high angular resolution. Optics express, 2007, no. 5, рp. 2683– 2690. DOI: 10.1117/1.2139971

27. Volz Hans G. Hans Industrial Color Testing: Fundamentals and Techniques. 2nd Edition. Wiley-VCH; 2nd Completely Revised edition, 2002, 388 p.

28. Horibe T., Ishii K., Fukutomi D., Awazu K. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication). Laser Ther, 2015, vol. 24, no. 4, рp. 303–310. DOI: 10.5978/islsm.15-OR-19

29. Vo-Dinh T. Biomedical Photonics Handbook II Vol. USA: CRC Press LLC, 2003, 300 p.

30. Ivanov Yu.S., Monsar O.A., Sinyavskyi I.I. Vygotovlennia glybokoi asferyky traektornym kopiiuvanniam ta ii zastosuvannia. [Fabrication deep aspheric by trajectory copying and its applying]. Bulletin of NTUU “KPI”. Series instrument making, 2004, no. 28, рp. 24–28 (in Ukrainian).

31. Bezuglyi M.A., Linucheva O.V., Bezuglaya N.V., Byk M.V., Kostiuk S.A. Kontrol formy elipsoidalnyh reflektoriv biomedychnyh fotometriv [Control of the ellipsoidal reflectors shape for biomedical photometers]. Research Bulletin of NTUU “KPI”, 2017, vol. 53, no. 1, рp. 62–69 (in Ukrainian).

32. Bezuglyi M., Bezuglaya N., Kuprii О., Yakovenko I. The non-invasive optical glucometer prototype with ellipsoidal reflectors. Proc. in IEEE, 2018, рp. 1–4. DOI: 10.1109/RTUCON.2018.8659864

33. Bezuglaya N.V., Bezuglyi M.A. Spatial Photometry of Scattered Radiation by Biological Objects. Proc. SPIE, 2013, no. 9032-15, рp. Q1–Q5. DOI: 10.1117/12.2044609


Review

For citations:


Bezuglyi M.A., Bezuglaya N.V., Ventsuryk A.V., Vonsevych K.P. Angular Photometry of Biological Tissue by Ellipsoidal Reflector Method. Devices and Methods of Measurements. 2019;10(2):160-168. https://doi.org/10.21122/2220-9506-2019-10-2-160-168

Views: 1048


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)