1. Ghabara T. Study of the emissivity of rough surfaces periodic using the method of coupled waves analysis (CWA) compared with method of geometrical optics approximation (GOA). Natural Science, 2011, no.3(01), rp. 57-64. https://doi.org/10.4236/ns.2011.31008
2. Nazarov Yu.F., Shkilko A.M., Tihonenko V.V., Kompaneec I.V. [Metals and alloys surface roughness investigation and control methods]. Zhurnal fiziki i inzhenerii poverhnosti [Journal of surface physics and engineering], 2007, no. 3-4(5), rp. 207-216 (in Russian).
3. Szewczenko J., Szewczenko J., Jaglarz J., Basiaga M., Kurzyk J., Paszenda Z. Optical methods applied in thickness and topography testing of passive layers on implantable titanium alloys. Optica Applicata, 2013, no. 1(43), rp. 173-180. https://doi.org/10.5277/oa130121
4. Feidenhans'l N.A., Hansen P.E., Pilny L., Madsen M.H., Bissacco G., Petersen J.C., Taboryski R.J. Comparison of optical methods for surface roughness characterization. Measurement Science and Technology, 2015, no. 8(26), rp. 085208. https://doi.org/10.1088/0957-0233/26/8/085208
5. Svitasheva S.N. Experimental Study of Polarization Properties of Rough Surface. Electrical and Electronic Engineering, 2012, no. 2(6), rp. 403-408. https://doi.org/10.5923/j.eee.20120206.10
6. Tuchin V.V. Opticheskaya biomeditsinskaya diagnostika v 2-h tomah. [Optical biomedical diagnostics, In 2 parts. Part. 1]. Translated from English, Moscow: Physmathlit, 2007, 560 p.
7. Bashkatov A.N., Genina E.A., Tuchin V.V. Chapter 5. Tissue Optical Properties in Handbook of Biomedical Optics. Taylor & Francis Group, LLC, CRC Press Inc., 2011, 37 p.
8. Tuan Vo-Dinh. Biomedical Photonics Handbook II Vol. USA: CRC Press LLC, 2003, 889 p.
9. Genina E. Metody biofotoniki. Fototerapiya [Methods of biophotonics: Phototherapy]. Saratov: Novyi Veter Publ., 2012, 119 p.
10. Litvinova K.S., Rafailov I.E., Dunaev A.V., Sokolovski S.G., Rafailov E.U. Non-invasive biomedical research and diagnostics enabled by innovative compact lasers. Progress in Quantum Electronics, 2017, vol. 56, rp. 1-14. https://doi.org/10.1016/j.pquantelec.2017.10.001
11. Rogatkin D.A., Lapaeva L.G. Prospects for Development of Noninvasive Spectrophotometric Medical Diagnosis. Biomedical Engineering, 2003, no. 4(37), rp. 217-222. https://doi.org/10.1023/B:BIEN.0000003304.00591.e7
12. Rogatkin D.A., Lapaeva L.G., Bychenkov O.A., Tereshchenko S.G., Shumskii V.I. Principal sources of errors in noninvasive medical spectrophotometry. Part 1. Physicotechnical sources and factors of errors. Measurement Techniques, 2013, no. 2(56), rr. 201 - 210.
13. Liemert A., Kienle A. Comparison between radiative transfer theory and the simplified spherical harmonics approximation for a semi-infinite geometry. Optics Letters, 2011, vol. 36, rp. 4041-4043. https://doi.org/10.1364/OL.36.004041
14. Gantria M., Trabelsib H., Bensalahb R., Sedikia E. Solution of a Radiative Transfer Problem in a Biological Tissue. An Optical Tomography Model. Proceedings of AIP Conference Proceedings 935, 237, 2007. https://doi.org/10.1063/1.2795420
15. Pavlov S., Kozlovska T., Vaselenko V. Optykoelektronni zasoby diagnostuvannia patologii liudyny, povyazanyh iz peryferychnym krovoobigom. Monografiia [Optoelectronic devices for the diagnosis of human pathologies associated with peripheral circulation: Monography]. Vinnytsia: VNTU, 2014, 140 p.
16. Zhao Y., Argyropoulos Ch., Hao Ya. Fullwave finite-difference time-domain simulation of electromagnetic cloaking structures. Optics Express, 2008, no. 16(9), rp. 6717-6730. https://doi.org/10.1364/OE.16.006717
17. Karagounis G., De Zutter D., Vande Ginste D. Full-wave simulation of optical waveguides via truncation in the method of moments using PML absorbing boundary conditions. Opt. Express, 2016, no. 24(25), rp. 28326- 28336. https://doi.org/10.1364/OE.24.028326
18. Lu Yu, Tian Ji., Cong W., Wang Ge, Yang W., Qin Ch., Xu M. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. Physics in Medicine and Biology, 2007, no. 52(15), rp. 4497-4512. https://doi.org/10.1088/0031-9155/52/15/009
19. Lapeer R.J., Gassona P.D., Karri V. Simulating plastic surgery: from human skin tensile tests, through hyperelastic finite element models to real-time haptics. Progress in Biophysics and Molecular Biology, 2010, no. 103(2-3), rp. 208-216. https://doi.org/10.1016/j.pbiomolbio.2010.09.013
20. Bezuglaya N.V., Bezuglyi M.A., Chmyr Yu.V. Spatial fluxing biometry of environments by ellipsoidal reflectors. Electronics and Communications, 2014, no. 83(6), rp. 87-93. (in Ukrainian)
21. Bezuglyi M., Bezuglaya N., Viruchenko A. On the possibility of ellipsoidal photometry and Monte Carlo simulation to spatial analysis of biological media. Proceedings of Electronics and nanotechnology ELNANO-2017, 2017, rp. 321-325. https://doi.org/10.1109/ELNANO.2017.7939771
22. Bezuglyi M.A., Bezuglaya N.V., Helich I.V. Ray tracing in ellipsoidal reflectors for optical biometry of media. Appl Opt., 2017, no. 56(30), rp. 8520-8526. https://doi.org/10.1364/AO.56.008520
23. Passos D., Hebden J.C., Pinto P.N., Guerra R. Tissue phantom for optical diagnostics based on a suspension of microspheres with a fractal size distribution. Biomed. Opt., 2005, no. 10, rp. 1-11. https://doi.org/10.1117/1.2139971
24. Jacques S.L. Optical properties of biological tissues: a review. Phys. Med. Biol., 2013, no. 58, rp. R37- R61. https://doi.org/10.1088/0031-9155/58/11/R37
25. Hall G., Jacques S.L., Eliceiri K.W., Campagnola P.J. Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient. Biomedical optics express, 2012, no. 3(11), rp. 2707-2719. https://doi.org/10.1364/BOE.3.002707
26. Robkamp D., Truffer F., Bolay S., Geiser M. Forward scattering measurement device with a high angular resolution. Optics express, 2007, no. 5, rp. 2683- 2690. https://doi.org/10.1117/1.2139971
27. Volz Hans G. Hans Industrial Color Testing: Fundamentals and Techniques. 2nd Edition. Wiley-VCH; 2nd Completely Revised edition, 2002, 388 p.
28. Horibe T., Ishii K., Fukutomi D., Awazu K. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication). Laser Ther, 2015, vol. 24, no. 4, rp. 303-310. https://doi.org/10.5978/islsm.15-OR-19
29. Vo-Dinh T. Biomedical Photonics Handbook II Vol. USA: CRC Press LLC, 2003, 300 p.
30. Ivanov Yu.S., Monsar O.A., Sinyavskyi I.I. Vygotovlennia glybokoi asferyky traektornym kopiiuvanniam ta ii zastosuvannia. [Fabrication deep aspheric by trajectory copying and its applying]. Bulletin of NTUU “KPI”. Series instrument making, 2004, no. 28, rp. 24-28 (in Ukrainian).
31. Bezuglyi M.A., Linucheva O.V., Bezuglaya N.V., Byk M.V., Kostiuk S.A. Kontrol formy elipsoidalnyh reflektoriv biomedychnyh fotometriv [Control of the ellipsoidal reflectors shape for biomedical photometers]. Research Bulletin of NTUU “KPI”, 2017, vol. 53, no. 1, rp. 62-69 (in Ukrainian).
32. Bezuglyi M., Bezuglaya N., Kuprii O., Yakovenko I. The non-invasive optical glucometer prototype with ellipsoidal reflectors. Proc. in IEEE, 2018, rp. 1-4. https://doi.org/10.1109/RTUCON.2018.8659864
33. Bezuglaya N.V., Bezuglyi M.A. Spatial Photometry of Scattered Radiation by Biological Objects. Proc. SPIE, 2013, no. 9032-15, rp. Q1-Q5. https://doi.org/10.1117/12.2044609