Control of Electrical and Optical Parameters of Humidity Sensors Active Elements Based on Tin Oxides Films with Variable Composition
https://doi.org/10.21122/2220-9506-2019-10-2-138-150
Abstract
The aim of this work is development of technique for synthesis of tin oxides films with various stoichiometric composition, characterized by high electrical conductivity and light transmittance in the UV and visible range of the electromagnetic spectrum, for their further application as humidity and gas sensors, as well as electrodes for electro-and photocatalytic converters.
Nonstoichiometric SnO/SnO2 /SnO2−δ films were synthesized by reactive magnetron sputtering of tin onto glass substrates in argon plasma with oxygen addition and with subsequent thermal oxidation of the formed layers in air. To change the structural, optical, and electrical properties of the films and to find out the optimal synthesis parameters, the oxygen content during the deposition process and the annealing temperature in air were varied in the range of 0–2 vol. % and of 200–450 °C, respectively. The characterization of the films was carried out using a 4-probe method for measuring the electrical resistance, X-ray diffraction, and optical spectroscopy of light transmission.
As a result of a comprehensive analysis of the structural, optical and electrical properties of the films, it was found that the optimal synthesis parameters to obtain the most transparent and conductive coatings promising for use as humidity, gas sensors and in photovoltaic devices are the following: oxygen content in argon plasma during sputtering process is ≈ 0,8–1,2 vol. %, the annealing temperature in air is ≈ 350–375 °C. In this case a polycrystalline film with high electrical conductivity and high transmittance in the visible and UV regions of the electromagnetic spectrum with prevailing of tin dioxide phase with structural defects (oxygen vacancies) is formed.
Keywords
About the Authors
D. V. AdamchuckBelarus
V. K. Ksenevich
Belarus
Address for correspondence: V.K. Ksenevich – Belarusian State University, Nezavisimosty Ave., 4, Minsk 220030, Belarus. e-mail: ksenevich@bsu.by
References
1. Khan A.F., Mehmood M., Rana A.M., Bhatti M.T. Effect of annealing on electrical resistivity of Rf-magnetron sputtered nanostructured SnO2 thin films. Applied Surface Science, 2009, vol. 255, no. 20, pp. 8562–8565. DOI: 10.1016/j.apsusc.2009.06.020
2. Bin Liu, Hua Chun Zeng. Salt-assisted deposition of SnO2 on α-MoO3 nanorods and fabrication of polycrystalline SnO2 nanotubes. J. Phys. Chem. B, 2004, vol. 108, no. 19, pp. 5867–5874. DOI: 10.1021/jp037822d
3. Korotcenkov G., Cho B., Brinzari V., Gulina L., Tolstoy V. Catalytically active filters deposited by SILD method for inhibiting sensitivity to ozone of SnO2 based conductometric gas sensors. Ferroelectrics, 2014, vol. 459, pp. 46–51. DOI: 10.1080/00150193.2013.837765
4. Ma N., Suematsu K., Yuasa M., Kida T., Shimanoe K. Effect of water vapor on Pd-Loaded SnO2 nanoparticles gas sensor. ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 10, pp. 5863–5869. DOI: 10.1021/am509082w
5. Huang H., Tian S., Xu J., Xie Z., Zeng D., Chen D., Shen G. Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties. Nanotechnology, 2012, vol. 23, no. 10, pp. 105502. DOI: 10.1088/0957-4484/23/10/105502
6. Alaf M., Gultekin D., Akbulut H. Tin/Tinoxide (Sn/SnO2 ) nanocomposites thin films as negative-electrode materials for li-ion batteries. Acta Physica Polonica A, 2013, vol. 123, no. 2, pp. 323–325. DOI: 10.12693/APhysPolA.123.323
7. Lou X.W., Li C.M., Archer L.A. Designed synthesis of coaxial SnO2 @carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials, 2009. DOI: 10.1002/adma.200803439
8. Journals I. Comparative studies of cerium and zirconium doped barium titanate. International Association of Scientific Innovation and Research (IASIR), 2014, pp. 15–19.
9. Lu Y.C., Ma C., Alvarado J., Kidera T., Dimov N., Meng Y.S., Okada S. Electrochemical properties of tin oxide anodes for sodium-ion batteries. Journal of Power Sources, 2015, vol. 284, pp. 287–295. DOI: 10.1016/j.jpowsour.2015.03.042
10. Lu Y.C., Ma C., Alvarado J., Dimov N., Meng Y.S., Okada S. Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries. J. Mater. Chem. A, 2015, vol. 3, no. 33, pp. 16971–16977. DOI: 10.1039/C5TA03893F
11. Saravanakumar B., Ramachandran S.P., Ravi G., Ganesh V., Ravichandran S., Muthu Mareeswaran P., Yuvakkumar R. Enhanced pseudocapacitive performance of SnO2 , Zn-SnO2 , and Ag-SnO2 nanoparticles. Ionics, 2018, vol. 24, no. 12, pp. 4081–4092. DOI: 10.1007/s11581-018-2727-8
12. Ohodnicki P.R., Natesakhawat S., Baltrus J.P., Howard B., Brown T.D. Characterization of optical, chemical, and structural changes upon reduction of sol– gel deposited SnO2 thin films for optical gas sensing at high temperatures. Thin Solid Films, 2012, vol. 520, no. 19, pp. 6243–6249. DOI: 10.1016/j.tsf.2012.05.023
13. Presley R.E., Munsee C.L., Park C.-H., Hong D., Wager J.F., Keszler D.A. Tin oxide transparent thin-film transistors. J. Phys. D: Appl. Phys., 2004, vol. 37, no. (20), pp. 2810–2813. DOI: 10.1088/0022-3727/37/20/006
14. Jeong J.-A., Kim H.-K. Characteristics of inkjetprinted nano indium tin oxide particles for transparent conducting electrodes. Current Applied Physics, 2010, vol. 10, no. 4, Supplement, pp. e105–e108. DOI: 10.1016/j.cap.2010.06.009
15. Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol., 2005, vol. 20, no. 4, pp. S35–S44. DOI: 10.1088/0268-1242/20/4/004
16. Ksenevich V., Adamchuk D., Odzhaev V., Zukowski P. Fabrication and characterization of transparent tin dioxide films with variable stoichiometric composition. Acta Physica Polonica A, 2015, vol. 128, no. 5, pp. 861–863. DOI: 10.12693/APhysPolA.128.861
17. Wang Z., Nayak P.K., Albar A., Wei N., Schwingenschlögl U., Alshareef H.N. Transparent SnO–SnO2 p–n junction diodes for electronic and sensing applications. Advanced Materials Interfaces, 2015, vol. 2, no. 18, pp. 1500374. DOI: 10.1002/admi.201500374
18. Zakaryan H. Adsorption of the H and H2 O on SnO2 surfaces in an O2 environment: density functional theory study. Armenian Journal of Physics, 2016, vol. 9, no. 4, pp. 283–293.
19. Rusling J.F. Environmental Electrochemistry: Fundamentals and applications in pollution abatement. J. Am. Chem. Soc., 1998, vol. 120, no. 45, pp. 11837–11837. DOI: 10.1021/ja975699w
20. Zhang C. Communication: Computing the helmholtz capacitance of charged insulator-electrolyte interfaces from the supercell polarization. J. Chem. Phys., 2018, vol. 149, no. 3, pp. 031103. DOI: 10.1063/1.5038639
21. Sinha A.K., Manna P.K., Pradhan M., Mondal C., Yusuf S.M., Pal T. Tin oxide with a p–n heterojunction ensures both UV and visible light photocatalytic activity. RSC Adv., 2013, vol. 4, no. 1, pp. 208–211. DOI: 10.1039/C3RA42740D
22. Srinivasan V., Patra M., Choudhary V., Mathew M., Pandya A. Phase-change annealing effects on electrical and optical properties of tin oxide thin films. Journal of Optoelectronics and Advanced Materials, 2010, vol. 12, no. 7, pp. 485–1489.
23. Batzill M., Diebold U. The Surface and materials science of tin oxide. Progress in Surface Science, 2005, vol. 79, no. 2, pp. 47–154. DOI: 10.1016/j.progsurf.2005.09.002
24. Ivanov V.V., Sidorak I.A., Shubin A.A., Denisova L.T. [Preparation of SnO2 powders by decomposition of thermally unstable compounds]. Zhurnal Sibirskogo federal'nogo universiteta [Journal of the Siberian Federal University], 2010, vol.3, no. 2, pp. 189–213.
25. Shatokhin A.N., Putilin F.N., Rumyantseva M.N., Gaskov A.M. [Gas sensitivity to hydrogen of thin films of tin dioxide superficially doped with platinum laser plasma of various structures and charge composition.]. Vestnik Moskovskogo universiteta. Seriya 2. Khimiya. [Bulletin of Moscow University. Series 2. Chemistry], 2009, vol. 50, no. 6, pp. 468–471.
26. Sarmah S., Kumar A. Optical properties of SnO2 nanoparticles. Indian J. Phys., 2010, vol. 84, no. 9, pp. 1211–1221. DOI: 10.1007/s12648-010-0109-9
27. Adamchuck D.V. Ksenevich V.K. Gorbachuk N.I., Shimanskij V.I. Impedance spectroscopy of polycrystalline tin dioxide films. Devices and Methods of Measurements, 2016, vol. 7, no. 3, pp. 312–321. DOI: 10.21122/2220-9506-2016-7-3-84-89.
28. Shamala K.S., Murthy S., Narasimha Rao K. Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods. Bull Mater Sci., 2004, vol. 27, no. 3, pp. 295–301. DOI: 10.1007/BF02708520
29. Srinivasan V., Patra M., Choudhary V., Mathew M., Pandya A. Phase-change annealing effects on electrical and optical properties of tin oxide thin films Institutional Repository IIT Bombay, 2010, vol. 12, no. 7, pp. 1485–1489.
30. Sefardjella H., Boudjema B., Kabir A., Schmerber G. Characterization of SnO2 obtained from the thermal oxidation of vacuum evaporated Sn thin films. Journal of Physics and Chemistry of Solids, 2013, vol. 74, no. 12, pp. 1686–1689. DOI: 10.1016/j.jpcs.2013.06.008
31. Abdullah N., Ismail N.M., Nuruzzaman D.M. Preparation of tin oxide (SnO2) thin films using thermal oxidation. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 319, pp. 012022. DOI: 10.1088/1757-899X/319/1/012022
32. Masterov D.V., Pavlov S.A., Parafin A.E., Drozdov Yu.N. Thin films of YBaCuO high-temperature superconductor grown in a simplified magnetron sputterer and their microwave application. Technical Physics. The Russian Journal of Applied Physics, 2007, vol. 52, no. 10, pp. 1351–1355. DOI: 10.1134/S1063784207100167
33. Ryabtsev S.V., Chuvenkova O.A., Popov A.E., Chernyshov F.M., Ryabtseva N.S., Domashevskaya E.P. [Mechanisms of oxidation of thin metal films of tin]. Kondensirovannyye sredy i mezhfaznyye granitsy [Condensed matter and interphase boundaries], 2012, vol. 14, no. 3, pp. 328–333.
34. Kondrashin V.I. [Determination of the thickness of thin optically transparent films SnO2 by the envelope method.] Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskiye nauki [Proceedings of higher educational institutions. Volga region. Technical science], 2016, vol. 2, no. 38, pp. 91–103.
35. Brus V.V., Kovalyuk Z.D., Maryanchuk P.D. Optical properties of TiO2 -MnO2 thin films prepared by electron-beam evaporation. Technical Physics. The Russian Journal of Applied Physics, 2012, vol. 57, no. 8, pp. 1148–1151. DOI: 10.1134/S1063784212080063
36. Brus V.V., Solovan M.N., Maystruk E.V., Kozyarsky I.P., Marianchuk P.D., Rappich J. [Features of the optical and electrical properties of CdTe polycrystalline films manufactured by thermal evaporation]. Fizika tverdogo tela. [Solid state physics], 2014, vol. 56, no. 10, pp. 1886–1890.
37. Baco S., Chik A., Yassin F.M. Study on optical properties of tin oxide thin film at different annealing temperature. Journal of Science and Technology, 2012, vol. 4, no. 1, pp. 61–71.
38. Abraham J.T., Thomas P.V., Gopchandran K.G., Joseph B., Vaidyan V.K. Oxidation Mechanism Involved in Thin Tin Films. Indian Journal of Engineering and Materials Sciences, 1996, vol. 3, no. 3, pp. 109–113.
39. Park S.H., Son Y.C., Willis W.S., Suib S.L., Creasy K.E. Tin oxide films made by physical vapor deposition-thermal oxidation and spray pyrolysis. Chem. Mater., 1998, vol. 10, no. 9, pp. 2389–2398. DOI: 10.1021/cm970672x
40. Saravanakumar M., Agilan S., Muthukumarasamy N., Rukkumani V. Structural and ferromagnetic investigation of the size effects in pure and co doped SnO2 nanoparticles. International journal of chemical sciences, 2015, vol. 13, no. 2, pp. 605–606.
41. Boroojerdian P. Structural and optical study of SnO nanoparticles synthesized using microwave–assisted hydrothermal route. International Journal of Nanoscience and Nanotechnology, 2013, vol. 9, no. 2, pp. 95–100.
42. Sangaletti L., Depero L.E., Allieri B., Pioselli F., Comini E., Sberveglieri G., Zocchi M. Oxidation of Sn thin films to SnO2 . Micro-raman mapping and X-ray diffraction studies. Journal of Materials Research, 1998, vol. 13, no. 9, pp. 2457–2460. DOI: 10.1557/JMR.1998.0343P
43. Shahtahmassebi N., Zohuri G.H., Attaran E., Nouri M.K. Fabrication and characterization of Silver-Tin dioxide core-shell structured nanocomposite particles. Materials Physics and Mechanics, 2013, vol. 17, no. 1, pp. 29–32.
44. Ahn H.-J., Choi H.-C., Park K.-W., Kim S.-B., Sung Y.-E. Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. J. Phys. Chem. B, 2004, vol. 108, no. 28, pp. 9815–9820. DOI: 10.1021/jp035769n
Review
For citations:
Adamchuck D.V., Ksenevich V.K. Control of Electrical and Optical Parameters of Humidity Sensors Active Elements Based on Tin Oxides Films with Variable Composition. Devices and Methods of Measurements. 2019;10(2):138-150. (In Russ.) https://doi.org/10.21122/2220-9506-2019-10-2-138-150