Preview

Devices and Methods of Measurements

Advanced search

Compact 999.6 nm Actively Q-Switched Yb3+:LuAlO for Laser-Induced Breakdown Spectroscopy Laser

https://doi.org/10.21122/2220-9506-2019-10-2-119-127

Abstract

Compact actively Q-switched diode-pumped lasers based on Yb3+-materials are of practical importance for wide range of scientific, industrial and biomedical applications. The aim of this work was to study the Yb3+:LuAlO3 actively Q-switched laser.

One of the most promising crystalline hosts for rare-earth ions are Perovskite-like aluminate crystals. Yttrium aluminate crystal YAlO3 (YAP) is a well-known host with good thermal and mechanical properties (thermal conductivity for undoped crystal is about 11 W/m·K and about 8 W/m·K for Yb(5 at.%):YAP) similar to those of YAG. The reduction in the thermal conductivity of doped laser crystal in comparison with host materials is small in the case of ions with close atomic mass and ionic radii such as for Yb3+ and Lu3+. This feature makes LuAlO3 (LuAP) more promising host crystal for doping by Yb3+ ions in contrast to YAP especially for high output power laser systems.

 In our work, for the first time to the best of our knowledge actively Q-switching laser operation of Yb3+:LuAP single crystal was demonstrated. The maximum average output power of 4.9 W at 50 kHz pulse repetition frequency (PRF) with opt.-to-opt. efficiency of 21 % was obtained with 30 % OC transmittance. Output power as high as 3.3 W with 333 µJ-laser pulses with duration of about 11.5 ns was demonstrated at 10 kHz PRF the corresponding pulse peak power was 29 kW. 97 µJ second harmonic pulses obtained with 29 % conversion efficiency at 10 kHz PRF.

Performed investigations show high potential of Yb3+:LuAP crystals as active elements of compact diode pumped actively Q-switched lasers due to high stimulated emission cross-section (≈ 3.74·10-20 cm2) at 999.6 nm wavelength and significant reduction of heat load on the active element when pumping around 980 nm and generation around 999 nm.

About the Authors

A. Rudenkov
Belarusian National Technical University
Belarus

Center for Optical Materials and Technologies 

Address for correspondence: Alexander Rudenkov – Center for Optical Materials and Technologies, Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus.     e-mail: a.rudenkov@bntu.by



V. Kisel
Belarusian National Technical University
Belarus
Center for Optical Materials and Technologies


A. Yasukevich
Belarusian National Technical University
Belarus


K. Hovhannesyan
Institute for Physical Research, National Academy of Sciences of Armenia
Armenia


A. Petrosyan
Institute for Physical Research, National Academy of Sciences of Armenia
Armenia


N. Kuleshov
Belarusian National Technical University
Belarus
Center for Optical Materials and Technologies


References

1. Breitling D., Föhl C., Dausinger F., Kononenko T., Konov V. Drilling of metals. Femtosecond Technology for Technical and Medical Applications, ed. Dausinger F., Lichtner F., Lubatschowski H. Berlin, Springer, 2004, pp. 131–154. DOI: 10.1007/b96440

2. Russbueldt P., Mans T., Weitenberg J., Hoffmann H.D., Poprawe R. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Opt. Lett., 2010, vol. 35, iss. 24, pp. 4169–4171. DOI: 10.1364/OL.35.004169

3. Eidam Tino, Hanf Stefan, Seise Enrico, Andersen Thomas V., Gabler Thomas, Wirth Christian, Schreiber Thomas, Limpert Jens, Tünnermann Andreas. Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett., 2010, vol. 35, pp. 94–96. DOI: 10.1364/OL.35.000094

4. Cremers D.A., Radziemski L.J. Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons, New York, 2006.

5. Wang Chunyu, Zang Huaguo, Li Xiaoli, Lu Yutian, Zhu Xiaolei. LD-pumped high repetition rate Q-switched Nd:YVO4 laser by using La3 Ga5 SiO14 single crystal electro-optic modulator. Chin. Opt. Lett., 2006, vol. 4, iss. 6, pp. 329–331.

6. Pati B., Wall K.F., Moulton P.F. A DiodePumped Q-Switched Nd:YLF Laser Using a Prismatic Pump Cavity. Advanced Solid-State Photonics., ed. Zayhowski J. OSA Trends in Optics and Photonics, Optical Society of America, 2003, paper 432. DOI: 10.1364/ASSP.2003.432

7. Peng Xiaoyuan, Asundi Anand, Chen Yihong, Xiong Zhengjun. Study of the Mechanical Properties of Nd:YVO4 Crystal by use of Laser Interferometry and Finite-Element Analysis. Appl. Opt., 2001, vol. 40, pp. 1396–1403. DOI: 10.1364/AO.40.001396

8. Yan Xingpeng, Liu Qiang, Fu Xing, Chen Hailong, Wang Dongsheng, Gong Mali. Comparative investigation on performance of acousto-optically Q-switched dualrod Nd:YAG−Nd:YVO4 laser and dual-rod Nd:YVO4 − Nd:YVO4 laser. Appl. Opt., 2010, vol. 49, iss. 22, pp. 4131–4138. DOI: 10.1364/AO.49.004131

9. DeLoach L.D., Payne S.A., Chase L.L., Smith L.K., Kway W.L., Krupke W.F. Evaluation of absorption and emission properties of Yb3+doped crystals for laser applications. IEEE Journal of Quantum Electronics, 1993, vol. 29, iss. 4, pp. 1179−1191. DOI: 10.1109/3.214504

10. Wu Ruifen, Phua Poh Boon, Lai Kin Seng. Linearly polarized 100-W output from a diode-pumped Nd:YAlO laser. Appl. Opt., 2000, vol. 39, iss. 3, pp. 431−434. DOI: 10.1364/AO.39.000431

11. 11. Zhu H.Y., Zhang G., Huang C.H., Wei Y., Duan Y.M., Chen W.D., Zhuang F.J. 6.2 W laser-diode end-pumped continuous-wave Nd:YALO3 laser at 1.34 μm. Optics Communications, 2011, vol. 284, iss. 12, pp. 2985–2987. DOI: 10.1016/j.optcom.2011.01.080

12. Yiou Sylvie, Balembois François, Georges Patrick, Brun Alain. High-power continuous-wave diodepumped Nd:YAlO3 laser that emits on low-gain 1378and 1385-nm transitions. Appl. Opt., 2001, vol. 40, iss. 18, pp. 3019–3022. DOI: 10.1364/AO.40.003019

13. Fu X.H., Li Y.L., Tao Z.H., Zeng Y.H. Diode pumped CW Nd3+:YAlO3 laser at 1339 nm. Laser Physics, 2011, vol. 21, iss. 5, pp. 877–879. DOI: 10.1134/S1054660X1109009X

14. Elder I.F., Payne M.J.P. YAP versus YAG as a diode-pumped host for thulium. Optics Communications, 1998, vol. 148, iss. 4–6, pp. 265–269. DOI: 10.1016/S0030-4018(97)00714-1

15. Li L.J., Yao B.Q., Wu D.Y., Wang J., Gang L., Wang Y.Z., Zhang Z.G. High Efficient Double EndPumped b-cut Tm,Ho:YAlO3 Laser. Laser Physics, 2011, vol. 21, iss. 3, pp. 446–449. DOI: 10.1134/S1054660X11050148

16. Li L.J., Yao B.Q., Qin J.P., Wu D.Y., Wang Y.M., Wang J., He Z.L., Liu W.Y., Chen J.J., Wang Y.Z., Zhang Z.G., Li A.H. High Power and Efficiency of a 2044-nm c-cut Tm, Ho:YAlO3 Laser. Laser Physics, 2011, vol. 21, iss. 3, pp. 489–492. DOI: 10.1134/S1054660X11050173

17. Fibrich M., Jelínková H., Šulc J., Nejezchleb K., Škoda V. Diode-pumped Pr:YAP lasers. Laser physics letters, 2011, vol. 8, no. 8, pp. 559–568. DOI: 10.1002/lapl.201110025

18. Weber M.J., Bass M., Andringa K., Monchamp R.R., Comperchio E. Czochralski growth and properties of YAlO3 laser crystals. Applied Physics Letters, 1969, vol. 15, iss. 10, 342 p. DOI: 10.1016/S0022-0248(99)00661-2

19. Aggarwal R.L., Ripin D.J., Ochoa J.R., Fan T.Y. Measurement of thermo-optic properties of Y3 Al5 O12, Lu3 Al5 O12, YAIO3 , LiYF4 , LiLuF4 , BaY2 F8 , KGd(WO4 )2 , and KY(WO4 )2 laser crystals in the 80–300K temperature range. Journal of Applied Physics, 2005, vol. 98, iss. 10, pp. 103514. DOI: 10.1063/1.2128696

20. Kisel Viktor E., Kurilchik Sergey V., Yasukevich Anatol S., Grigoriev Sergey V., Smirnova Sofya A., Kuleshov Nikolay V. Spectroscopy and femtosecond laser performance of Yb3+:YAlO3 crystal. Opt. Lett., 2008, vol. 33, iss. 19, pp. 2194–2196. DOI: 10.1364/OL.33.002194

21. Klemens P.G. Thermal Resistance due to Point Defects at High Temperatures. Phys. Rev., 1960, vol. 119, iss. 2, pp. 507–509. DOI: 10.1103/PhysRev.119.507

22. Gaumé Romain, Viana Bruno, Vivien Daniel, Roger Jean-Paul, Fournier Danièle. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals. Applied Physics Letters, 2003, vol. 83, iss. 7, pp. 1355–1357. DOI: 10.1063/1.1601676

23. Peters R., Kränkel C., Fredrich-Thornton S.T., Beil K., Petermann K., Huber G., Heckl O.H., Baer C.R.E., Saraceno C.J., Südmeyer T., Keller U. Thermal analysis and efficient high power continuous-wave and modelocked thin disk laser operation of Yb-doped sesquioxides. Appl. Phys. B, 2011, vol. 102, iss. 3, pp. 509–514. DOI: 10.1007/s00340-011-4428-0

24. Garton G., Wanklin B.M. The rare-earth aluminates. J. Crystal Growth, 1967, vol. 1, iss. 3, pp. 164–167. DOI: 10.1016/0022-0248(67)90028-0

25. Ivanov A.O., Morozova L.G., Mochalov I.V., Feofilov P.P. The luminescence of neodymium ions in single crystals of lutetium orthoaluminates. Optics and spectroscopy, 1975, vol. 38, iss. 2, pp. 405–407.

26. Shirvinskaya A.K., Popova V.F. The system of Lu2 O3 -Al2 O3 . Dokl. Akad. Nauk SSSR, 1977, vol. 233, pp. 1110–1113.

27. Petrosyan A.G., Shirinyan G.O., Ovanesyan K.L., Kuzanyan A.S. Formation and properties of crystalline compounds in the Lu2 O3 -Al2 O3 system. Journal of Crystal Growth, 1981, vol. 52, part 2, pp. 556–560. DOI: 10.1016/0022-0248(81)90339-0

28. Petrosyan A.G., Popova V.F., Gusarov V.V., Shirinyan G.O., Pedrini C., Lecoq P. The Lu2 O3 – Al2 O3 system: Relationships for equilibrium-phase and supercooled states. Journal of Crystal Growth, 2006, vol. 293, iss. 1, pp. 74–77. DOI: 10.1016/j.jcrysgro.2006.05.017

29. Petrosyan A.G., Popova V., Ugolkov V.L., Romanov D.P., Ovanesyan K.L. A phase stability study in the Lu2 O3 -Al 2 O3 system. J. Crystal Growth, 2013, vol. 377, pp. 178–183. DOI: 10.1016/j.jcrysgro.2013.04.054

30. Petrosyan A.G. Crystal growth of laser oxides in the vertical Bridgman configuration. Journal of Crystal Growth, 1994, vol. 139, iss. 3–4, pp. 372–392. DOI: 10.1016/0022-0248(94)90190-2

31. Chernov A.A., Givargizov E.I., Bagdasarov Kh.S., Kuznetsov V.A., Dem’yanets L.N., Lobachev A.N. Modern Crystallography, ed. Vainshtain B.K. Nauka, Moscow, 1980; Springer-Verlag, Berlin, 1994. DOI: 10.1007/978-3-642-57254-8

32. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A., 1976, vol. 32, pp. 751–767. DOI: 10.1107/S0567739476001551

33. Sumida D.S., Fan T.Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Opt. Lett., 1994, vol. 19, iss. 17, pp. 1343−1345. DOI: 10.1364/OL.19.001343

34. Kühn Henning, Fredrich-Thornton Susanne T., Kränkel Christian, Peters Rigo, Petermann Klaus. Model for the calculation of radiation trapping and description of the pinhole method. Opt. Lett., 2007, vol. 32, iss. 13, pp. 1908−1910. DOI: 10.1364/OL.32.001908

35. Boulon G., Guyot Y., Canibano H., Hraiech S., Yoshikawa A. Characterization and comparison of Yb3+doped YA1O3 perovskite crystals (Yb:YAP) with Yb3+doped Y3 Al5 O12 garnet crystals (Yb:YAG) for laser application. J. Opt. Soc. Am. B, 2008, 25, 884−896. DOI: 10.1364/JOSAB.25.000884

36. Kovalyov A.A., Preobrazhenskii V.V., Putyato M.A., Rubtsova N.N., Semyagin B.R., Kisel V.E., Ruden-kov A.S., Kuleshov N.V., Pavlyuk A.A. Efficient high-power femtosecond Yb3+:KY(WO4 )2 laser. Laser Phys. Lett., 2015, vol. 12, no. 7, pp. 075801. DOI: 10.1088/1612-2011/12/7/075801

37. Yasyukevich A.S., Shcherbitskii V.G., Kisel V.E., Mandrik A.V., Kuleshov N.V. Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers. Journal of Applied Spectroscopy, 2004, vol. 71, no. 2, pp. 202−208. DOI: 10.1023/B:JAPS.0000032875.04400.a0

38. Rudenkov Alexander, Kisel Viktor, Yasukevich Anatol, Hovhannesyan Karine, Petrosyan Ashot, Kuleshov Nikolai. Yb3+:CaYAlO4 -based chirped pulse regenerative amplifier. Opt. Lett., 2016, vol. 41, iss. 10, pp. 2249−2252. DOI: 10.1364/OL.41.002249

39. Rudenkov Alexander, Kisel Viktor, Yasukevich Anatol, Hovhannesyan Karine, Petrosyan Ashot, Kuleshov Nikolay. Yb3+:LuAlO3 crystal as a gain medium for efficient broad band chirped pulse regenerative amplification. Opt. Lett., 2017, vol. 42, iss. 13, pp. 2415−2418. DOI: 10.1364/OL.42.002415


Review

For citations:


Rudenkov A., Kisel V., Yasukevich A., Hovhannesyan K., Petrosyan A., Kuleshov N. Compact 999.6 nm Actively Q-Switched Yb3+:LuAlO for Laser-Induced Breakdown Spectroscopy Laser. Devices and Methods of Measurements. 2019;10(2):119-127. https://doi.org/10.21122/2220-9506-2019-10-2-119-127

Views: 1324


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)