Preview

Model of Field Electron Emission from the Edge of Flat Graphene into Vacuum

https://doi.org/10.21122/2220-9506-2019-10-1-61-68

Abstract

Graphene-based nanostructures are the promising materials for applications as electron emitters.

The aim of the work is to study the field electron emission from the edge of a single graphene plane.

In the semi-classical approximation, a model of field electron emission from the edge of a rectangular graphene sheet has been developed.

The current density of field electron emission into vacuum from the edge of a flat graphene sheet was calculated depending on the magnitude of the pulling electric field strength.

The analysis and comparison of limiting emission currents from graphene and from bulk systems have been carried out.

The results of the work can be used in the development of graphene-based field effect cathodes.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus

Address for correspondence: N.A. Poklonski – Belarusian State University, Nezavisimosti Ave., 4, Minsk 220030, Belarus.    e-mail: poklonski@bsu.by; poklonski@tut.by



A. I. Siahlo
Belarusian State University
Belarus
Nezavisimosti Ave., 4, Minsk 220030


S. A. Vyrko
Belarusian State University
Belarus
Nezavisimosti Ave., 4, Minsk 220030


S. V. Ratkevich
Belarusian State University
Belarus
Nezavisimosti Ave., 4, Minsk 220030


A. T. Vlassov
Belarusian State University
Belarus
Nezavisimosti Ave., 4, Minsk 220030


References

1. Poklonski N.A., Vyrko S.A., Siahlo A.I., Poklonskaya O.N., Ratkevich S.V., Hieu N.N., Kocherzhenko A.A. Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design. Mater. Res. Express, 2019, vol. 6, no. 4, pp. 042002 (25 pp.). DOI: 10.1088/2053-1591/aafb1c

2. Ratnikov P.V., SilinA.P. Two-dimensional graphene electronics: current status and prospects. Phys. Usp., 2018, vol. 61, no. 12, pp. 1139–1174. DOI: 10.3367/UFNe.2017.11.038231

3. Chernozatonskii L.A., Sorokin P.B., Artukh A.A. Novel graphene-based nanostructures: physicochemical properties and applications. Russ. Chem. Rev., 2014, vol. 83, no. 3, pp. 251–279. DOI: 10.1070/RC2014v083n03ABEH004367

4. Eletskii A.V. Carbon nanotube-based electron field emitters. Phys. Usp., 2010, vol. 53, no. 9, pp. 863–892. DOI: 10.3367/UFNe.0180.201009a.0897

5. Gulyaev Yu.V., Aban’shin N.P., Gorfinkel’ B.I., Morev S.P., Rezchikov A.F., Sinitsyn N.I., Yakunin A.N. New solutions for designing promising devices based on low-voltage field emission from carbon nanostructures. Tech. Phys. Lett., 2013, vol. 39, no. 6, pp. 525–528. DOI: 10.1134/S1063785013060035

6. Chen L., Yu H., Zhong J., Song L., Wu J., Su W. Graphene field emitters: A review of fabrication, characterization and properties. Mater. Sci. Eng. B, 2017, vol. 220, pp. 44–58. DOI: 10.1016/j.mseb.2017.03.007

7. Han J.-W., Oh J.S., Meyyappan M. Vacuum nanoelectronics: Back to the future? – Gate insulated nanoscale vacuum channel transistor. Appl. Phys. Lett., 2012, vol. 100, no. 21, pp. 213505 (4 pp.). DOI: 10.1063/1.4717751

8. Bell L.D. Ballistic electron emission microscopy and spectroscopy: Recent results and related techniques. J. Vac. Sci. Technol. B., 2016, vol. 34, no. 4, pp. 040801 (27 pp.). DOI: 10.1116/1.4959103

9. Kleshch V.I., Bandurin D.A., Orekhov A.S., Purcell S.T., Obraztsov A.N. Edge field emission of large-area single layer graphene. Appl. Surf. Sci., 2015, vol. 357, pp. 1967–1974. DOI: 10.1016/j.apsusc.2015.09.160

10. Konakova R.V., Okhrimenko O.B., Svetlichnyi A.M., Ageev O.A., Volkov E.Yu., Kolomiytsev A.S., Jityaev I.L., Spiridonov O.B. Characterization of fieldemission cathodes based on graphene films on SiC. Semiconductors, 2015, vol. 49, no. 9, pp. 1242–1245. DOI: 10.1134/S1063782615090146

11. Givargizov E.I. Diamond-coated silicon tips as field emitters. Russian Microelectronics, 1997, vol. 26, no. 2, pp. 82–86.

12. Rakhimov A.T. Autoemission cathodes (cold emitters) on nanocrystalline carbon and nanodiamond films: physics, technology, applications. Phys. Usp., 2000, vol. 43, no. 9, pp. 926–929. DOI: 10.1070/PU2000v043n09ABEH000808

13. Lee J.-K., Lee S.-C., Ahn J.-P., Kim S.-C., Wilson J.I.B., John P. The growth of AA graphite on (111) diamond. J. Chem. Phys., 2008, vol. 129, no. 23, pp. 234709 (4 pp.). DOI: 10.1063/1.2975333

14. Majumdar C., Bose M.K., Maity A.B., Chakravarti A.N. Effect of size quantization on field emission from ultrathin films of degenerate wide-gap semiconductors. Phys. Status Solidi B., 1987, vol. 141, no. 2, pp. 435– 439. DOI: 10.1002/pssb.2221410210

15. Il’chenko L.G., Kryuchenko Yu.V., Litovchenko V.G. Electron field emission (FE) from quantum size systems. Appl. Surf. Sci., 1995, vol. 87/88, pp. 53–60. DOI: 10.1016/0169-4332(94)00531-1

16. Poklonski N.A., Podenok S.L., Vyrko S.A. Field emission from 2D layer. Physics, Chemistry and Application of Nanostructures: Reviews and Short Notes to Nanomeeting-2005, Minsk, 24–27 May, 2005, ed. V.E. Borisenko, S.V. Gaponenko, V.S. Gurin. Singapore, World Scientific, 2005, pp. 144–147. DOI: 10.1142/9789812701947_0029

17. Landau L.D., Lifshitz L.M. Quantum Mechanics: Non-Relativistic Theory. Oxford, Pergamon Press, 1989, 687 p.

18. Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene. Rev. Mod. Phys., 2009, vol. 81, № 1, pp. 109–162. DOI: 10.1103/RevModPhys.81.109

19. Fang T., Konar A., Xing H., Jena D. Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett., vol. 91, no. 9, pp. 092109 (3 pp.). DOI: 10.1063/1.2776887

20. Tolmachev V.V. [Semi-classical approximation in quantum mechanics]. Moscow, MSU Publ., 1980, 187 p. (in Russian).

21. Nikitin E.E., Pitaevskii L.P. Imaginary time and the Landau method of calculating quasiclassical matrix elements. Phys. Usp., 1993, vol. 36, no. 9, pp. 851–853. DOI: 10.1070/PU1993v036n09ABEH002310

22. Song S.M., Park J.K., Sul O.J., Cho B.J. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Lett., 2012, vol. 12, no. 8, pp. 3887–3892. DOI: 10.1021/nl300266p

23. Eletskii A.V., Iskandarova I.M., Knizhnik A.A., Krasikov D.N. Graphene: fabrication methods and thermophysical properties. Phys. Usp., 2011, vol. 54, no. 3, pp. 227–258. DOI: 10.3367/UFNe.0181.201103a.0233

24. Fursey G. Field Emission in Vacuum Microelectronics, New York, Kluwer, 2005, xv+205 p.

25. Modinos A. Field, Thermionic, and Secondary Electron Emission Spectroscopy. New York, Springer, 1984, xii+375 p. DOI: 10.1007/978-1-4757-1448-7


Review

For citations:


Poklonski N.A., Siahlo A.I., Vyrko S.A., Ratkevich S.V., Vlassov A.T. Model of Field Electron Emission from the Edge of Flat Graphene into Vacuum. Devices and Methods of Measurements. 2019;10(1):61-68. (In Russ.) https://doi.org/10.21122/2220-9506-2019-10-1-61-68

Views: 1024


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)