Preview

Er,Yb:Ca3RE2(BO3)4 (RE=Y, Gd) – Novel 1.5 μm Laser Crystals

https://doi.org/10.21122/2220-9506-2019-10-1-14-22

Abstract

The search for new crystalline host materials for the usage in lasers emitting in the eye-safe spectral range of 1.5–1.6 µm is an important task. The aim of this work was to study the growth technique, spectroscopic properties and laser characteristics of new active media – crystals Er3+,Yb3+:Ca2RE2(BO3)4

(RE=Y, Gd).

Calcium-yttrium Er3+,Yb3+:Ca3Y2 (BO3)4 (CYB) and calcium-gadolinium Er3+,Yb3+: Ca2 Gd 2(BO3)4  (CGB) oxoborate crystals co-doped with erbium and ytterbium ions were investigated. Polarized absorption and emission cross-section spectra were determined. The lifetimes of 4I11/2 and 4I13/2 energy levels of Er3+ ions were measured and ytterbium-erbium energy transfer efficiencies were estimated. The calculation of the gain cross-section spectra was performed. By using of Er3+,Yb3+: Ca2 RE 2(BO3)(RE=Y, Gd) crystals the laser performance was realized, for the first time to the best of our knowledge. The laser characteristics were studied in a quasi-CW (QCW) laser operation.

The wide band with a peak at the wavelength of 976 nm is observed in the absorption spectra of both crystals. This peak coincides with the emission wavelength of the pump laser diodes for Yb-doped active media. The maximum value of absorption cross-section was 1.7 × 10–20 cm2 for polarization E // b for both crystals. The lifetimes of the upper laser level 4I13/2 of Er3+ ions were 580 ± 30 μs and 550 ± 30 μs for Er,Yb:CYB and Er,Yb:CGB crystals, respectively. The energy transfer efficiencies from ytterbium to erbium ions for an Er,Yb:CYB and Er,Yb:CGB crystals were 94 % and 96 %, respectively. According to gain spectrum of the Er,Yb:CYB crystal the gain band peak is centered at the wavelength of 1530 nm. The maximum QCW output power was 0.5 W with slope efficiency of 13 % regarding to absorbed pump power for an Er,Yb: CYB crystal. The laser beam parameter M2 did not exceed < 1.5.

Based on the obtained results, it can be concluded that these crystals are promising active media for lasers emitting in the spectral range of 1.5–1.6 μm for the usage in laser rangefinder and laser-induced breakdown spectroscopy systems, and LIDARs.

About the Authors

K. N. Gorbachenya
Belarusian National Technical University
Belarus

Address for correspondence: K.N. Gorbachenya – Center for Optical Materials and Technologies, Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus.     e-mail: gorby@bntu.by



R. V. Deineka
Belarusian National Technical University
Belarus

Center for Optical Materials and Technologies 

Nezavisimosti Ave., 65, Minsk 220013

 



V. E. Kisel
Belarusian National Technical University
Belarus

Center for Optical Materials and Technologies 

Nezavisimosti Ave., 65, Minsk 220013




A. S. Yasukevich
Belarusian National Technical University
Belarus

Center for Optical Materials and Technologies 

Nezavisimosti Ave., 65, Minsk 220013




A. N. Shekhovtsov
Institute for Single Crystals, NAS of Ukraine
Ukraine
Nauki Ave., 60, Kharkov 61072


M. V. Kosmyna
Institute for Single Crystals, NAS of Ukraine
Ukraine
Nauki Ave., 60, Kharkov 61072


N. V. Kuleshov
Belarusian National Technical University
Belarus

Center for Optical Materials and Technologies 

Nezavisimosti Ave., 65, Minsk 220013




References

1. Myers M.J. LIBS system with compact fiber spectrometer, head mounted spectra display and hand held eye-safe erbium glass laser gun. Proc. SPIE, Bellingham, 2010, vol. 7578, pp. 7578−7582. DOI: 10.1117/12.841901

2. Hecht J. Lidar for self-driving cars. Optics and Photonics News, 2018, vol. 29, pp. 26−35.

3. Burns P., Dawes J., Dekker P., Pipper J., Jiang H., Wang J. Optimization of Er,Yb:YCOB for cw laser operation. IEEE J. Quantum Electron, 2004, vol. 40, no. 11. – pp. 1575−1582. DOI: 10.1109/JQE.2004.834935

4. Tolstik Nikolai A., Kurilchik Sergey V., Kisel Victor E., Kuleshov Nikolay V., Maltsev Victor V., Pilipenko Oleg V., Koporulina Elizaveta V., Leonyuk Nikolai I. Efficient 1W continuous-wave diode-pumped Er,Yb:YAl(BO3)4 laser. Opt. Lett., 2007, vol. 32, no. 22, pp. 3233−3235. DOI: 10.1364/OL.32.003233

5. Gorbachenya K.N., Kisel V.E., Yasukevich A.S., Maltsev V.V., Leonyuk N.I., Kuleshov N.V. Highly efficient continuous-wave diode-pumped Er, Yb:GdAl3(BO3)4 laser. Opt. Lett., 2013, vol. 38(14), pp. 2446−2448. DOI: 10.1364/OL.38.002446

6. Gorbachenya K.N., Kisel V.E., Yasukevich A.S., Maltsev V.V., Leonyuk N.I., Kuleshov N.V. Eyesafe 1.55 μm passively Q-switched Er,Yb:GdAl3(BO3)4 diodepumped laser. Opt. Lett., 2016, vol. 41, no. 5, pp. 918– 921. DOI: 10.1364/OL.41.000918

7. Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, Yidong Huang Spectroscopic and laser properties of Er3+, Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 μm. Opt. Express, 2010, vol. 18, no. 13, pp. 13700–13707. DOI: 10.1364/OE.18.013700

8. Maltsev V.V., Koporulina E.V., Leonyuk N.I., Gorbachenya K.N., Kisel V.E., Yasukevich A.S., Kuleshov N.V. Crystal growth of CW diode-pumped (Er3+,Yb3+):GdAl3(BO3)4 laser material. Journal of Crystal Growth, 2014, vol. 401, pp. 807–812. DOI: 10.1016/j.jcrysgro.2013.11.100

9. Gudzenko L.V., Kosmyna M.B., Shekhovtsov A.N., Paszkowicz W., Sulich A., Domagała J.Z., Popov P.A., Skrobov S.A. Crystal growth and glass-like thermal conductivity of Ca3RE2(BO3)4 (RE-Y, Gd, Nd) single crystals. Crystals, 2017, vol. 7:88, 9 p. DOI: 10.3390/cryst7030088

10. Huang Jianhua, Chen Yujin, Lin Yanfu, Gong Xinghong, Luo Zundu, Huang Yidong High efficient 1.56 μm laser operation of Czochralski grown Er:Yb:Sr3Y2(BO3)4 crystal. Opt.Express, 2008, vol. 16, no. 22, pp. 17243−17248. DOI: 10.1364/OE.16.017243

11. Sumida D.S., Fan T.Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Opt. Lett., 1994, vol. 19, no. 17, pp. 1343−1345. DOI: 10.1364/OL.19.001343

12. Denker B., Galagan B., Ivleva L., Osiko V., Sverchkov S., Voronina I., Hellstrom J.E., Karlsson G., Laurell F. Luminescent and laser properties of Yb,Eractivated GdCa4O(BO3)3 a new crystal for eyesafe 1.5 micrometer lasers. Appl. Phys. B., 2004, vol. 79, no. 5, pp. 577−581. DOI: 10.1007/s00340-004-1605-4

13. Yasyukevich A.S., Shcherbitskii V.G., Kisel V.E., Mandrik A.V., Kuleshov N.V. Integral method of reciprocity in the spectroscopyof laser crystals with impurity centers. Journal of Applied Spectroscopy, 2004, vol. 71, no. 2, pp. 202−208. DOI: 10.1023/B:JAPS.0000032875.04400.a0

14. Wei B., Zhang L.Z., Lin Z.B., Wang G.F. Optical transition probability of Er3+ ions in Er3+/Yb3+codoped Ca3Ln2(BO3)4 (Ln=Y, Gd, La) crystals. Materials Research Innovations 11, 2007, pp. 154−157. DOI: 10.1179/143307507X225605

15. Levoshkin A., Petrov A., Montagne J.E. Highefficiency diode-pumped Q-switched Yb:Er:glass laser. Optics Communications, 2000, vol. 185, no. 4−6, pp. 399−405. DOI: 10.1016/S0030-4018(00)01012-9

16. Laporta P., Taccheo S., Longhia S., Svelto O., Svelto C. Erbium-ytterbium microlasers: optical properties and lasing characteristics. Opt. Mater., 1999, vol. 11, no. 2−3, pp. 269−288. DOI: 10.1016/S0925-3467(98)00049-4

17. Tolstik N.A., Troshin A.E., Kurilchik S.V., Kisel V.E., Kuleshov N.V., Matrosov V.N., Matrosov T.A., Kupchenko M.I. Spectroscopy, continuous-wave and Qswitched diode-pumped laser operation of Er3+,Yb3+:YVO4 crystal. Appl. Phys. B., 2007, vol. 86, no. 2, pp. 275−278. DOI: 10.1007/s00340-006-2427-3

18. Kuleshov N.V., Lagatsky A.A., Podlipensky A.V., Mikhailov V.P., Kornienko A.A., Dunina E.B., Hartung S., Huber G. Fluorescence dynamics, excited-state absorption, and stimulated emission of Er3+ in KY(WO4)2. Journal of the Optical Society of Amerika B, 1998, vol. 15, no. 3, pp. 1205−1212. DOI: 10.1364/JOSAB.15.001205


Review

For citations:


Gorbachenya K.N., Deineka R.V., Kisel V.E., Yasukevich A.S., Shekhovtsov A.N., Kosmyna M.V., Kuleshov N.V. Er,Yb:Ca3RE2(BO3)4 (RE=Y, Gd) – Novel 1.5 μm Laser Crystals. Devices and Methods of Measurements. 2019;10(1):14-22. https://doi.org/10.21122/2220-9506-2019-10-1-14-22

Views: 1134


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)