Preview

Devices and Methods of Measurements

Advanced search

Model of Electromagnetic Emitter Based on a Stream of Single Electrons inside Curved Carbon Nanotube

https://doi.org/10.21122/2220-9506-2018-9-4-288-295

Abstract

The problems of elaboration and application of microand nanometer sized antennas for the generation and reception of electromagnetic radiation is still relevant in both fundamental and applied aspects. With decreasing antenna size, the frequency of electromagnetic radiation increases, and its power decreases. To increase the radiation power, the periodic (in space) electrodynamic structures are used. The aim of the work is to find the possibility of application of injection and (quasi)ballistic drift of single electrons inside curved carbon nanotubes for emission of electromagnetic waves in the microwave range and to determine the parameters of the radiating system that affect the radiation power.

By the calculation within the framework of classical electrodynamics it is shown the possibility in principle of generation of electromagnetic radiation of the gigahertz range by a stream of single electrons inside a hollow curved dielectric carbon nanotube.

It was found that the spectrum and power of this radiation can be controlled by varying the electron flux density, length and curvature of the hollow nanotube.

The results of the work can be applied for elaboration of a microminiature emitter of microwave electromagnetic radiation based on a curved carbon nanotube in the engineering of contactless probe microscopy.

About the Authors

N. A. Poklonski
Belarusian State University
Belarus

Address for correspondence: Poklonski N.A. – Belarusian State University, Nezavisimosti Ave., 4, Minsk 220030, Belarus.    e-mail: poklonski@bsu.by; poklonski@tut.by



S. A. Vyrko
Belarusian State University
Belarus


A. T. Vlassov
Belarusian State University
Belarus


A. I. Siahlo
Belarusian State University
Belarus


S. V. Ratkevich
Belarusian State University
Belarus


References

1. Kharlamova M.V. Electronic properties of pristine and modified single-walled carbon nanotubes. Phys. Usp., 2013, vol. 56, no. 11, pp. 1047–1073. DOI: 10.3367/UFNe.0183.201311a.1145

2. Treacy M.M.J., Ebbesen T.W., Gibson J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature, 1996, vol. 381, no. 6584, pp. 678–680. DOI: 10.1038/381678a0

3. Laird E.A., Kuemmeth F., Steele G.A., Grove Rasmussen K., Nygård J., Flensberg K., Kouwenhoven L.P. Quantum transport in carbon nanotubes. Rev. Mod. Phys., 2015, vol. 87, no. 3, pp. 703–764. DOI: 10.1103/RevModPhys.87.703

4. Jensen K., Weldon J., Garcia H., Zettl A. Nanotube radio. Nano Lett., 2007, vol. 7, no. 11, pp. 3508–3511. DOI: 10.1021/nl0721113

5. Kleshch V.I., Obraztsov A.N., Obraztsova E.D. Electromechanical self-oscillations of carbon nanotube field emitter. Carbon., 2010, vol. 48, no. 13, pp. 3895– 3900. DOI: 10.1016/j.carbon.2010.06.055

6. Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, ed. R. Waser. Weinheim, Wiley, 2012, 1040 p.

7. Lee S.W., Campbell E.E.B. Nanoelectromechanical devices with carbon nanotubes. Curr. Appl. Phys., 2013, vol. 13, no. 8, pp. 1844–1859. DOI: 10.1016/j.cap.2013.02.023

8. Dyachkov P.N. [Electronic properties and application of nanotubes]. Moscow, BINOM. Laboratoriya znanii, 2015, 491 p. (in Russian).

9. Bratman V.L., Litvak A.G., Suvorov E.V. Mastering the terahertz domain: sources and applications. Phys. Usp., 2011, vol. 54, no. 8, pp. 837–844. DOI: 10.3367/UFNe.0181.201108f.0867

10. Batygin V.V., Toptygin I.N. [Collection of problems in electrodynamics]. Moscow : NIC RHD, 2002, 640 p. (in Russian).

11. Griffiths D.J. Introduction to Electrodynamics. Cambridge, Cambridge University Press, 2017, xviii+600 p.

12. Elias D.C., Nair R.R., Mohiuddin T.M.G., Morozov S.V., Blake P., Halsall M.P., Ferrari A.C., Boukhvalov D.W., Katsnelson M.I., Geim A.K., Novoselov K.S. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science, 2009, vol. 323, no. 5914, pp. 610–613. DOI: 10.1126/science.1167130

13. Klavsyuk A.L., Saletsky A.M. Formation and properties of metallic atomic contacts. Phys. Usp., 2015, vol. 58, no. 10, pp. 933–951. DOI: 10.3367/UFNe.0185.201510a.1009

14. Nolle E.L. Tunneling photoeffect mechanism in metallic nanoparticles activated by cesium and oxygen. Phys. Usp., 2007, vol. 50, no. 10, pp. 1079–1082. DOI: 10.1070/PU2007v050n10ABEH006368

15. Bykov V.P., Gerasimov A.V., Turin V.O. Coulomb disintegration of weak electron fluxes and the photocounts. Phys. Usp., 1995, vol. 38, no. 8, pp. 911–921. DOI: 10.1070/PU1995v038n08ABEH000101

16. Klepikov N.P. [Radiation of photons and electronpositron pairs in a magnetic field]. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki [Journal of Experimental and Theoretical Physics], 1954, vol. 26, no. 1, pp. 19–34 (in Russian).

17. Ternov I.M. Synchrotron radiation. Phys. Usp., 1995, vol. 38, no. 4, pp. 409–434. DOI: 10.1070/PU1995v038n04ABEH000082

18. Schwartz M. Principles of Electrodynamics. New York, Dover, 1987, viii+344 p.

19. Sivukhin D.V. [General course of physics]. In 5 vols. Vol. I. [Mechanics]. Moscow, Fizmatlit; MIPT Publ., 2005, 560 p.

20. Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. New York, Dover, 2000, xx+1130 p.

21. Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, ed. M. Abramowitz, I.A. Stegun. New York, Dover, 1970, xiv+1046 p.

22. Épp V.Ya., Sedunov V.M., Zal’mezh V.F. Coherence of synchrotron radiation. Sov. Phys. J., 1988, vol. 31, no. 3, pp. 180–182. DOI: 10.1007/BF00898217

23. Sitenko A.G. [The theory of scattering]. Kiev, Vishcha shkola, 1975, 256 p. (in Russian).

24. Bolotovskii B.M., Serov A.V. Low-frequency radiation of relativistic particles moving along the arc of a circle // Sov. Phys. JETP, 1992, vol. 75, no. 5, pp. 815–817. Available at: http://www.jetp.ac.ru/cgi-bin/r/index/e/75/5/p815?a=list (accessed 15.10.2018).

25. Afanas’ev S.A., Sementsov D.I. Energy fluxes during the interference of electromagnetic waves. Phys. Usp., 2008, vol. 51, no. 4, pp. 355–361.DOI: 10.1070/PU2008v051n04ABEH006502

26. Reznik A.N., Demidov E.V. Quantitative determination of sheet resistance of semiconducting films by microwave near-field probing. J. Appl. Phys., 2013, vol. 113, no. 9, pp. 094501 (9 pp.). DOI: 10.1063/1.4794003


Review

For citations:


Poklonski N.A., Vyrko S.A., Vlassov A.T., Siahlo A.I., Ratkevich S.V. Model of Electromagnetic Emitter Based on a Stream of Single Electrons inside Curved Carbon Nanotube. Devices and Methods of Measurements. 2018;9(4):288-295. (In Russ.) https://doi.org/10.21122/2220-9506-2018-9-4-288-295

Views: 1340


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)