Preview

Yb:CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy

https://doi.org/10.21122/2220-9506-2018-9-3-205-214

Abstract

Diode-pumped femtosecond chirped pulse regenerative amplifiers based on Yb3+-materials are of practical importance for wide range of scientific, industrial and biomedical applications. The aim of this work was to study the amplification of broadband chirped femtosecond pulses in regenerative amplifier based on Yb3+:CaYAlO4 crystal.

Such systems use femtosecond mode-locked lasers as seed pulse sources and amplify nJ-seed pulses to sub-mJ energy range. Most chirped pulse regenerative amplifier systems described in the literature use seed lasers with typical pulse spectral width at the level of 10–15 nm full width at half maximum (FWHM) that limit the seed pulse duration of about 90 fs and amplified pulse duration at the level of 200 fs due to strong influence of gain narrowing effect on the amplified pulse parameters. Yb3+-doped crystals with wide and smooth gain bandwidth as an active medium of chirped femtosecond pulse regenerative amplification systems allow to reduce negative contribution of gain narrowing effect and lead to shortening of amplified pulses. In this research we study the chirped pulse regenerative amplification of broad-band femtosecond pulses (60 nm spectral width FWHM) in the Yb3+:CaYAlO -based chirped pulse regenerative amplifier. Substantial reduction of the amplified pulse duration down to 120 fs (19.4 nm spectral width FWHM) with average power of 3 W at 200 kHz pulse repetition frequency was demonstrated without any gain narrowing compensation technique.

The results of experimental investigation of broad-band seeded Yb3+:CaYAlO -based chirped pulse regenerative amplifier are reported for the first time to our knowledge. 120 fs-pulses (19.4 nm FWHM) with average output power of 3 W were demonstrated without any gain narrowing compensation technique. Despite the significant reduction of amplified pulse duration the task of improvement group velocity dispersion balance (including high orders of group velocity dispersion) remains relevant.

About the Authors

A. S. Rudenkov
Belarusian National Technical University
Belarus

Address for correspondence: Alexander Rudenkov – Center for Optical Materials and Technologies, Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus e-mail: a.rudenkov@bntu.by



V. E. Kisel
Belarusian National Technical University
Belarus
Center for Optical Materials and Technologies


A. S. Yasukevich
Belarusian National Technical University
Belarus
Center for Optical Materials and Technologies


K. L. Hovhannesyan
Institute for Physical Research, National Academy of Sciences of Armenia
Armenia


A. G. Petrosyan
Institute for Physical Research, National Academy of Sciences of Armenia
Armenia


N. V. Kuleshov
Belarusian National Technical University
Belarus
Center for Optical Materials and Technologies


References

1. Breitling D., Föhl C., Dausinger F., Kononenko T., Konov V. Ultrashort Interaction with Materials. Femtosecond Technology for Technical and Medical Applications. F. Dausinger, F. Lichtner, H. Lubatschowski, eds. Springer, Berlin, 2004. doi: 10.1007/b96440

2. Russbueldt P., Mans T., Weitenberg J., Hoffmann H.D., Poprawe R. Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. Opt. Lett., 2010, vol. 35, рр. 4169–4171. doi: 10.1364/OL.35.004169

3. Eidam Tino, Hanf Stefan, Seise Enrico, V. Andersen Thomas, Gabler Thomas, Wirth Christian, Schreiber Thomas, Limpert Jens, Tunnermann Andreas. Femtosecond fiber CPA system emihing 830 W average output power. Opt. Lett., 2010, vol. 35, pp. 94-96. https://doi.Org/10.1364/OL.35.000094

4. Fleischhaker R., Gebs R., Budnicki A., Wolf M., Kleinbauer J., Sutter D.H. Compact gigawatt-class sub-picosecond Yb:YAG thin-disk regenerative chirped-pulse amplifier with high average power at up to 800 kHz. 2013 Conference on Lasers and Electro- Optics – International Quantum Electronics Conference (Optical Society of America, 2013), paper CFIE_4_1. https://doi.org/10.1109/CLEOE-IQEC.2013.6801054

5. Schneider W., Ryabov A., Lombosi Cs., Metzger T., Major Zs., Fulop J.A., Baum P. 800-fs, 330 pj pulses from a 100-W regenerative Yb:YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO^. Opt. Lett., 2014, vol. 39, pp. 6604-6607. https://doi.Org/10.1364/OL.39.006604.

6. Pouysegur J., Delaigue M., Honninger C., Zaouter Y., Georges P., Dmon F., Mottay E. Numerical and Experimental Analysis of Nonlinear Regenerative Amplifiers Overcoming the Gain Bandwidth Limi¬tation. Selected Topics in Quantum Electronics, IEEE Journal of, 2015, vol. 21, no. 1, pp. 212, 219. https://doi.org/10.1109/JSTQE.2014.2321520

7. Caracciolo E., Pirzio F., Kemnitzer M., Gorjan M., Guandalini A., Kienle F., Agnesi A., Aus Der Au J. 42 W femtosecond Yb:Lu2O3 regenerative amplifier. Opt. Lett., 2016, vol. 41, pp. 3395–3398. https://doi.org/10.1364/OL.41.003395

8. Caracciolo E., Kemnitzer M., Guandalini A., Pirzio F., Aus der Au J., Agnesi A. 28-W, 217 fs solid-state Yb:CAlGdO regenerative amplifiers. Opt. Lett., 2013, vol. 38, pp. 4131–4133. https://doi.org/10.1364/OL.38.004131.

9. Raybaut P., Balembois F., Druon F., Georges P. Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers. IEEE Journal of Quantum Electronics, 2005, vol. 41, no. 3, pp. 415– 425. doi: 10.1109/JQE.2004.841930

10. Kim G.H., Yang J., Chizhov S.A., Sall E.G., Kulik A.V., Yashin V.E., Kang U. A high brightness Q-switched oscillator and regenerative amplifier based on a dual-crystal Yb:KGW laser. Laser Phys. Lett., 2013, vol. 10, 125004 (5 p.). https://doi.org/10.1088/1612-2011/10/12/125004

11. Pouysegur Julien, Delaigue Martin, Zaouter Yoann, Hönninger Clemens, Mottay Eric, Jaffrès Anaël, Loiseau Pascal, Viana Bruno, Georges Patrick, Druon Frédéric. Sub-100-fs Yb:CALGO nonlinear regenerative amplifier. Opt. Lett., 2013, vol. 38, pp. 5180–5183. https://doi.org/10.1364/OL.38.005180

12. Pirzio Federico, Cafiso D. Di Dio Samuele, Kemnitzer Matthias, Guandalini Annalisa, Kienle Florian, Veronesi Stefano, Tonelli Mauro, Aus der Au Juerg, Agnesi Antonio. Sub-50-fs widely tunable Yb:CaYAlO laser pumped by 400-mW single-mode fiber-coupled laser diode. Opt. Express, 2015, vol. 23, pp. 9790–9795. https://doi.org/10.1364/OE.23.009790

13. Gao Ziye, Zhu Jiangfeng, Wang Junli, Wei Zhiyi, Xu Xiaodong, Zheng Lihe, Su Liangbi, Xu Jun. Generation of 33 fs pulses directly from a Kerr-lens mode-locked Yb:CaYAlO laser. Photon. Res., 2015, vol. 3, pp. 335–338. https://doi.org/10.1364/PRJ.3.000335

14. Ma Jie, Huang Haitao, Ning Kaijie, Xu Xiaodong, Xie Guoqiang, Qian Liejia, Ping Loh Kian, Tang Dingyuan. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb:CaYAlO laser. Opt. Lett., 2016, vol. 41, pp. 890–893. https://doi.org/10.1364/OL.41.000890

15. KaminskiiA.A.,PetrosyanA.G.,Ovanesyan K.L., Shirinyan G.O., Butaeva T.I., Markosyan A.A. Two generation channels of the CaYAlO disordered crystal. Inorganic Materials, 1991, vol. 27, pp. 426–427.

16. Sumida D.S., Fan T.Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media. Opt. Lett., 1994, vol. 19, pp. 1343–1345. https://doi.org/10.1364/OL.19.001343

17. Kühn Henning, Fredrich-Thornton Susanne T., Kränkel Christian, Peters Rigo, Petermann Klaus. Model for the calculation of radiation trapping and description of the pinhole method. Opt. Lett., 2007, vol. 32, pp. 1908– 1910. https://doi.org/10.1364/OL.32.001908

18. Yasyukevich A.S., Shcherbitskii V.G., Kisel V.E., Mandrik A.V., Kuleshov N.V. Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers. Journal of Applied Spectroscopy, 2004, vol. 71, no. 2, pp. 202–208. https://doi.org/10.1023/B:JAPS.0000032875.04400.a0.

19. Li Dongzhen, Xu Xiaodong, Zhu Haomiao, Chen Xueyuan, Tan Wei De, Zhang Jian, Tang Dingyuan, Ma Jan, Wu Feng, Xia Changtai, Xu Jun. Characterization of laser crystal Yb:CaYA10^. J. Opt. Soc. Am. В 28, 2011, pp. 1650-1654. https://doi.Org/10.1364/JOSAB.28.001650

20. Kisel V.E., Rudenkov A.S., Pavlyuk A.A., Kovalyov A.A., Preobrazhenskii V.V., Putyato M.A., Rubtsova N.N., Semyagin B.R., Kuleshov N.V. Highpower, efficient, semiconductor saturable absorber modelocked Yb:KGW bulk laser. Opt. Lett., 2015, vol. 40, pp. 2707–2710. https://doi.org/10.1364/OL.40.002707

21. Rudenkov Alexander, Kisel Viktor, Matrosov Vladimir, Kuleshov Nikolai. 200 kHz 5.5 W Yb3+:YVO -based chirped-pulse regenerative amplifier. Opt. Lett., 2015, vol. 40, pp. 3352–3355. https://doi.org/10.1364/OL.40.003352.

22. Rudenkov Alexander, Kisel Viktor, Yasukevich Anatol, Hovhannesyan Karine, Petrosyan Ashot, Kuleshov Nikolay. Yb3+:LuAlO3 crystal as a gain medium for efficient broadband chirped pulse regenerative amplification. Opt. Lett., 2017, vol. 42, pp. 2415–2418. https://doi.org/10.1364/OL.42.002415

23. Agrawal G.P. Nonlinear Fiber Optics (Fourth Edition). Optics and Photonics, Academic Press, San Diego, 2006, p. 529. https://doi.org/10.1016/B978-0-12-369516-1.X5000-6.


Review

For citations:


Rudenkov A.S., Kisel V.E., Yasukevich A.S., Hovhannesyan K.L., Petrosyan A.G., Kuleshov N.V. Yb:CALYO-based femtosecond chirped pulse regenerative amplifier for temporally resolved pump-probe spectroscopy. Devices and Methods of Measurements. 2018;9(3):205-214. https://doi.org/10.21122/2220-9506-2018-9-3-205-214

Views: 1294


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)