Preview

Devices and Methods of Measurements

Advanced search

CHARACTERIZATION OF THE ELECTROPHYSICAL PROPERTIES OF SILICON-SILICON DIOXIDE INTERFACE USING PROBE ELECTROMETRY METHODS

https://doi.org/10.21122/2220-9506-2017-8-4-24-31

Abstract

Introduction of submicron design standards into microelectronic industry and a decrease of the gate dielectric thickness raise the importance of the analysis of microinhomogeneities in the silicon-silicon dioxide system. However, there is very little to no information on practical implementation of probe electrometry methods, and particularly scanning Kelvin probe method, in the interoperational control of real semiconductor manufacturing process. The purpose of the study was the development of methods for nondestructive testing of semiconductor wafers based on the determination of electrophysical properties of the silicon-silicon dioxide interface and their spatial distribution over wafer’s surface using non-contact probe electrometry methods.

Traditional C-V curve analysis and scanning Kelvin probe method were used to characterize silicon- silicon dioxide interface. The samples under testing were silicon wafers of KEF 4.5 and KDB 12 type (orientation <100>, diameter 100 mm).

Probe electrometry results revealed uniform spatial distribution of wafer’s surface potential after its preliminary rapid thermal treatment. Silicon-silicon dioxide electric potential values were also higher after treatment than before it. This potential growth correlates with the drop in interface charge density. At the same time local changes in surface potential indicate changes in surface layer structure.

Probe electrometry results qualitatively reflect changes of interface charge density in silicon-silicon dioxide structure during its technological treatment. Inhomogeneities of surface potential distribution reflect inhomogeneity of damaged layer thickness and can be used as a means for localization of interface treatment defects.

About the Authors

V. А. Pilipenko
Integral JSC
Belarus
Kazintsa Str., 121 A, Minsk 220108


V. A. Saladukha
Integral JSC
Belarus
Kazintsa Str., 121 A, Minsk 220108


V. A. Filipenya
Integral JSC
Belarus
Kazintsa Str., 121 A, Minsk 220108


R. I. Vorobey
Belarusian National Technical University
Belarus
Nezavisimosty Ave., 65, Minsk 220013


O. K. Gusev
Belarusian National Technical University
Belarus
Nezavisimosty Ave., 65, Minsk 220013


A. L. Zharin
Integral JSC
Belarus
Kazintsa Str., 121 A, Minsk 220108


K. V. Pantsialeyeu
Belarusian National Technical University
Belarus
Nezavisimosty Ave., 65, Minsk 220013


A. I. Svistun
Belarusian National Technical University
Belarus
Nezavisimosty Ave., 65, Minsk 220013


A. K. Tyavlovsky
Belarusian National Technical University
Belarus

Address for correspondence: Tyavlovsky Andrey – Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus e-mail: tyavlovsky@bntu.by



K. L. Tyavlovsky
Belarusian National Technical University
Belarus
Nezavisimosty Ave., 65, Minsk 220013


References

1. Schroder D.K. Semiconductor Material and Device Characterization. / Hoboken, New Jersey, John Wiley and Sons, Inc., 2006, 790 p. doi: 10.1002/0471749095

2. Schroder D.K. Trends in Lifetime Measurements. Electrochemical Society Proceedings, 2000, vol. 17, pp. 365–383.

3. Everaert J.L., Rosseel E., Dekoster J., Pap A., Meszaros A., Kis-Szabo K., Pavelka T. Con-tactless Mobility Measurements of Inversion Charge Carriers on Silicon Substrates with SiO2 and HfO2 Gate Dielectrics. Appl. Phys. Lett., 2010, vol. 96, pp. 122906. doi: 10.1063/1.3373920

4. Oborina E.I., Hoff A.M. Noncontact interface trap determination of SiO2–4H–SiC structures. J. Appl. Phys., 2010, vol.107, pp. 013703. doi: 10.1063/1.3272081

5. Schroder D.K. Contactless Surface Charge Semiconductor Characterization. Materials Science and Engineering: B, 2002, vol. 91–92, pp. 196–210. doi: 10.1016/S0921-5107(01)00993-X

6. Schroder D.K., Choi B.D., Kang S.G., Ohashi W., Kitahara K., Opposits G., Pavelka T., Benton J. Silicon Epitaxial Layer Recombination and Generation Lifetime Characterization. IEEE Transactions on Electron Devices, 2003, vol. 50, no. 4, pp. 906–912. doi: 10.1109/TED.2003.812488

7. KominV.V., BelloA.F., Brundle C.R., Uritsky Y.S. Status of Non-contact Electrical Measurements. AIP Conference Proceedings, 2003, vol. 683, pp. 782–795. doi: 10.1063/1.1622559

8. Vorobey R.I., Zharin A.L., Gusev O.K., Petlitsky A.N., Pilipenko V.A., Turtsevitch A.S., Tyavlovsky A.K., Tyavlovsky K.L. [Study of silicon- insulator structure defects based on analysis of a spatial distribution of a semiconductor wafers’ surface potential]. Devices and Methods of Measurements, 2013, no. 2(7), pp. 67–72 (in Russian).

9. Pogosov V.V., Shtepa O.M. Effect of deformation on surface characteristics of finite metal-lic crystals. Ukr. J. Phys., 2002, vol. 47, no. 11, pp. 1065–1070.

10. Nazarov A., Thierry D. Application of Volta potential mapping to determine metal surface defects. Electrochimica Acta, 2007, vol. 52, pp. 7689–7696. doi: 10.1016/j.electacta.2007.05.077

11. Neaton J.B., Muller D.A., Ashcroft N.W. Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett., 2000, vol. 85, no. 6, pp. 1298–1301.

12. Cze S. [SBIC technology]. Vol. 1. Mir Pabl., Moscow, 1984, 405 p. (in Russian).

13. Zharkikh Yu.S., Lysochenko S.V. Mechanic- electrical transformations in the Kelvin method. Applied Surface Science, 2017, vol. 400, pp. 71–76. doi: 10.1016/j.apsusc.2016.12.085

14. Tyavlovsky A.K. [Mathematical modeling of a distance dependence of a scanning Kelvin probe lateral resolution]. Devices and Methods of Measurements, 2012, no. 1(4), pp. 30–36 (in Russian).

15. Gorban A.P., Litovchenko V.G., Peikow P.Ch. Investigation of the fast surface state spectrum of MIS structures by differential C-V method. Phys. State Sol. (a), 1972, vol. 10, no. 1, pp. 289–292.

16. Gorlov M.I., Yemelyanov V.A., Anufriev D.L. [Technological rejection and diagnostic tests of semiconductor production]. Minsk, Belaruskaya Navuka Pabl., 2006, 367 p. (in Russian).

17. Bobrova Ye.A., Omelyanovskaya N.M. [MOS structures capacitance-voltage characteristics peculiarities due to oxide charge]. Fizika i Technika Poluprovodnikov, 2008, vol. 42, iss. 11, pp. 1380–1383 (in Russian).

18. Alexandrov O.V., Dus’ A.I. [Model of fixed charge formation in thermal silicon dioxide]. Fizika i Technika Poluprovodnikov, 2011, vol. 45, iss. 4, pp. 474– 480 (in Russian).

19. Herbert G. Origin of the fixed charge in thermally oxidized silicon. J. Electrochem. Soc., 1977, vol. 124, no. 2, pp. 314–317.

20. Holiney R.Yu., Matveeva L.A., Venger E.F. Investigation of the undersurface damaged layers in silicon wafers. Semiconductor phys., quantum electronics and optoelectronics, 1999, vol. 2, no. 4, рp. 10–12.

21. Khatko V.V. Struktury metal-dioksid kremniya- poluprovodnik dlya integral’nykh mikroskhem [Metal- silicon dioxide-semiconductor structures for integrated circuits]. Minsk, BNTU Publ., 2009, 234 p. (in Russian).

22. Rumak N.V., Khatko V.V. [Dielectric films in solid-state microelectronics]. Minsk, Navuka i technika Publ., 1990, 192 p. (in Russian).


Review

For citations:


Pilipenko V.А., Saladukha V.A., Filipenya V.A., Vorobey R.I., Gusev O.K., Zharin A.L., Pantsialeyeu K.V., Svistun A.I., Tyavlovsky A.K., Tyavlovsky K.L. CHARACTERIZATION OF THE ELECTROPHYSICAL PROPERTIES OF SILICON-SILICON DIOXIDE INTERFACE USING PROBE ELECTROMETRY METHODS. Devices and Methods of Measurements. 2017;8(4):344-356. (In Russ.) https://doi.org/10.21122/2220-9506-2017-8-4-24-31

Views: 1174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)