METROLOGICAL SUPPORT OF DOSIMETRY GAMMA-RAY WITH ENERGY TO 10 MEV FOR RADIATION PROTECTION DEVICES
https://doi.org/10.21122/2220-9506-2017-8-3-279-285
Abstract
The field of high-energy gamma-ray for the calibration of radiation protection devices can be obtained by capturing thermal neutrons from titanium target (to 7 MeV) and nickel target (to 10 MeV). The aim of this work was to determine the metrological characteristics of capture gamma-ray fields from titanium target and nickel target obtained at the AT140 Neutron Calibration Facility to provide dosimetry up to 10 MeV.
We have chosen energy intervals in which we can calibrate dosimetry devices taking into account the accompanying generation of gamma-ray neutrons by the fast neutron source 238PuBe, the capture radiation of collimator materials and capture radiation from targets.
We measured air kerma rate with the aid of the reference AT5350 dosimeter with the ionization chamber TM32002. Using the Monte-Carlo simulation, we obtained the energy distribution of the air kerma rate for targets. We determined the geometric dimensions of the uniform field and the interval of operating distances of the facility.
We investigated the metrological characteristics of capture gamma-ray fields from titanium target and nickel target obtained at the AT140 Neutron Calibration Facility for dosimetric radiation protection devices. We showed that in such fields it is possible to calibrate dosimetry devices in the extended energy range up to 10 MeV.
About the Authors
D. I. KomarBelarus
Address for correspondence: Komar D. – SPE «АТОМТЕХ», Gikalo str., 5, Minsk 220005, Belarus e-mail: damiankomar@yandex.ru
R. V. Lukashevich
Belarus
Gikalo str., 5, Minsk 22000
V. D. Guzov
Belarus
Gikalo str., 5, Minsk 22000
S. A. Kutsen
Belarus
Bobruiskaya str., 11, Minsk 220030
References
1. Itsumasa U., Tadashi T., Systematics of GammaRay Energy Spectra for Classification of Workplaces around a Nuclear Facility. J. Jpn. Health Phys. Soc.,1988, vol. 3, pp. 1440–1443.
2. Rogers D. O. A nearly mono-energetic 6–7 MeV photon calibration source. Health Physics, 1983, vol. 45, no. 1, pp. 127–137. doi: 10.1097/00004032-198307000-0001
3. Ionizing radiation. Detectors. Including codes of practice / PTW – Freiburg. – 2017. – 95 pp.
4. Duvall K.C., Heaton H.T., Soares C.G. The development of a 6–7 MeV photon field for instrument calibration. Nuclear Instruments and Methods in Physics Research, 1985, vol. 10–11, no. 2, pp. 942–945. doi: 10.1016/0168-583X(85)90145-4
5. Guldbakke S., Schaffer S. Properties of high-energy photon fields to be applied for calibration purposes. Nuclear Instruments and Metods in Physics Research, 1990, vol. 299, iss. 1–3, pp. 367–371. doi: 10.1016/0168-9002(90)90806-H
6. Komar D., Kutsen S. [Influence of scattered neutron radiation on metrological characterictics of AT140 Neutron Calibration Facility]. Devices and Methods of Measurements, 2017, vol. 8, no. 1, pp. 23–31 (in Russian). doi: 10.21122/2220-9506-2017-8-1-23-31
7. Komar D., Lukashevich R., Guzov V., Kutsen S. [Neutron capture gamma ray field with energy to 10 MeV for metrological support of radiation protection devices]. Devices and Methods of Measurements, 2016, vol. 7, no. 3, pp. 296–304 (in Russian). doi: 10.21122/2220-9506-2016-7-3-296-304
8. Bermann F. Étalonnage de détecteurs de radioprotection avec des gammas d'énergie supérieure à 1 MeV: utilisation de faisceaux de gammas de capture. Radioprotection, 1991, vol. 26, no. 3, pp. 493–513. doi: 10.1051/radiopro/1991017
9. Briestmeister J.F. ed. MCNP-A general Monte Carlo N-particle transport code, Version 4A. Report LA-12625-M, Los Alamos, NM: Los Alamos National Laboratory, 1994, 736 p.
10. Ceberg C. P., Salford L. G. Neutron capture imaging of 10B in tissue specimens. Radiotherapy and Oncology, 1993, vol. 26, iss. 2, pp. 139–146. doi: 10.1016/0167-8140(93)90095-P.
Review
For citations:
Komar D.I., Lukashevich R.V., Guzov V.D., Kutsen S.A. METROLOGICAL SUPPORT OF DOSIMETRY GAMMA-RAY WITH ENERGY TO 10 MEV FOR RADIATION PROTECTION DEVICES. Devices and Methods of Measurements. 2017;8(3):279-285. (In Russ.) https://doi.org/10.21122/2220-9506-2017-8-3-279-285