DEPENDENCE OF THE SURFACE-ENHANCED RAMAN SCATTERING SIGNAL ON THE SHAPE OF SILVER NANOSTRUCTURES GROWN IN THE SiO2 /n-Si POROUS TEMPLATE
https://doi.org/10.21122/2220-9506-2017-8-3-79-81
Abstract
Surface-enhanced Raman scattering is a powerful method used in chemoand biosensorics. The aim of this work was to determine the relationship between the signal of Surface-enhanced Raman scattering and the shape of silver nanostructures under the influence of laser radiation with different power.
Plasmonic nanostructures were synthesized in silicon dioxide pores on monocrystalline silicon n-type substrate. The pores were formed using ion-track technology and selective chemical etching. Silver deposition was carried out by galvanic displacement method. Synthesis time was chosen as a parameter that allows controlling the shape of a silver deposit in the pores of silicon dioxide on the surface of single-crystal n-silicon during electrodeless deposition. Deposition time directly effects on the shape of metal nanostructures.
Analysis of the dynamics of changing the morphology of the metal deposit showed that as the deposition time increases, the metal evolves from individual metallic crystallites within the pores at a short deposition time to dendritic-like nanostructures at a long time. The dependence of the intensity of Surface-enhanced Raman scattering spectra on the shape of the silver deposit is studied at the powers of a green laser (λ = 532 nm) from 2.5 μW to 150 μW on the model dye analyte Rodamin 6G. The optimum shape of the silver deposit and laser power is analyzed from this point of view design of active surfaces for Surface-enhanced Raman scattering with nondestructive control of small concentrations of substances.
The silver nanostructures obtained in porous template SiO2 on n-type silicon substrate could be used as plasmon-active surfaces for nondestructive investigations of substances with low concentrations at low laser powers.
About the Authors
D. V. YakimchukBelarus
Address for correspondence: Yakimchuk D.V. – Scientific and Practical Materials Research Center of NAS of Belarus, P. Brovka str., 19, Minsk 220072, Belarus e-mail: dim2yakim@gmail.com
E. Yu. Kaniukov
Belarus
P. Brovka str., 19, Minsk 220072
S. E. Demyanov
Belarus
P. Brovka str., 19, Minsk 220072
V. D. Bundyukova
Belarus
P. Brovka str., 19, Minsk 220072
A. V. Dzeinak
Belarus
Kosmonavtov boulevard, 21, Brest 224016
I. I. Makoed
Belarus
Kosmonavtov boulevard, 21, Brest 224016
G. M. Arzumanyan
Russian Federation
Universitetskaya str., 19, Dubna 141980
N. V. Doroshkevich
Russian Federation
Joliot-Curie str., 6, Dubna 141980
K. Z. Mamatkulov
Russian Federation
Joliot-Curie str., 6, Dubna 141980
V. Sivakov
Germany
Albert Einstein str., 9, Jena 07745
References
1. Wei H. and Xu H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale, 2013, vol. 5, no. 207890, pp. 10794–805. doi: 10.1039/c3nr02924g
2. Su K.H., ei Q.-H., Zhang X., Mock J.J., Smith D.R., Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett., 2003, vol. 3, no. 8, pp. 1087–1090. doi: 10.1021/nl034197f
3. Kim K. and Shin K.S. Surface-Enhanced Raman Scattering: A Powerful Tool for Chemical Identification. Anal. Sci., 2011, vol. 27, no. 8, p. 775.
4. Kneipp K. Surface-enhanced raman scattering. Phys. Today, 2007, vol. 60, no. 11, pp. 40–46. doi: 10.1063/1.2812122
5. Santoro G., Yu. S., Shchwartzkopf M., Zhang P., Vayalil S.K., Risch J.F.H., Rubhausen M.A., Hernandez M., Domingo C., Roth S.V. Silver substrates for surface enhanced Raman scattering: Correlation between nanostructure and Raman scattering enhancement. Appl. Phys. Lett., 2014, vol. 104, no. 24, p. 243107. doi: 10.1063/1.4884423
6. Wang A. and Kong X. Review of Recent Progress of Plasmonic Materials and Nano-Structures for SurfaceEnhanced Raman Scattering. Materials (Basel), 2015, vol. 8, no. 6, pp. 3024–3052. doi: 10.3390/ma8063024
7. Xia Y. and Campbell D.J. Plasmons: Why Should We Care? J. Chem. Educ., 2007, vol. 84, no. 1, p. 91. doi: 10.1155/2012/457968
8. Sharma B., Frontiera R.R., Henry A.-I., Ringe E., Van Duyne R.P. SERS: Materials, applications, and the future. Mater. Today, 2012, vol. 15, no. 1–2, pp. 16–25. doi: 10.1016/S1369-7021(12)70017-2
9. Khlebtsov N. G. [Optics and biophotonics of nanoparticles with plasmon resonance]. Quantum Electronics, 2008, vol. 38, no. 6, pp. 504–529 (in Russian).
10. Kumari G., Kandula J., Narayana C. How Far Can We Probe by SERS? J. Phys. Chem. C, 2015, vol. 119, no. 34, pp. 20057–20064. doi: 10.1021/acs.jpcc.5b07556
11. Kaniukov E., Yakimchuk D., Arzumanyan G., Terryn H., Baert K., Kozlovskiy A., Zdorovets M., Belonogov E., Demyanov S. Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template. Philos. Mag., 2017, vol. 6435, pp. 1–16. doi: 10.1080/14786435.2017.1330562
12. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I., Zdorovets M.V., Yakimchuk D.V., Shumskaya E.E., Kadyrzhanov K.K. Electrochemically deposited copper nanotubes. J. Surf. Investig. X-ray, Synchrotron Neutron Tech., 2017, vol. 11, no. 1, pp. 270–275. doi: 10.1134/S1027451017010281
13. Demyanov S.E., Kaniukov E.Yu., Petrov A.V., Belonogov E.K., Streltsov E.A., Ivanov D.K., Ivanova Yu.A., Trautmann C., Terryn H., Petrova M., Utsarros J., Sivakov V. On the morphology of Si/SiO2 /Ni nanostructures with swift heavy ion tracks in silicon oxide. J. Surf. Investig. X-ray, Synchrotron Neutron Tech., 2014, vol. 8, no. 4, pp. 805–813. doi: 10.1134/S1027451014040326
14. Chan Y.F., Zhang C.X, Wu Z.L., Zhao D.M., Wang W., Xu H.J., Sun X.M. Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering. Appl. Phys. Lett., 2013, vol. 102, no. 18, p. 183118. doi: 10.1016/j.solidstatesciences.2009.03.001
15. Ye W., Shen C., Tian J., Wang C., Hui C., Gao H. Controllable growth of silver nanostructures by a simple replacement reaction and their SERS studies. Solid State Sci., 2009, vol. 11, no. 6, pp. 1088–1093. doi: 10.1016/j.apsusc.2008.02.060
16. Qiu T., Wu X.L., Shen J.C., Xia Y., Shen P.N., Chu P.K. Silver fractal networks for surface-enhanced Raman scattering substrates. Appl. Surf. Sci., 2008, vol. 254, no. 17, pp. 5399–5402. doi: 10.1063/1.4803937
17. Kaniukov E.Y., Utsarroz J., Yakimchuk D.V., Petrova M., Terryn H., Sivakov V., Petrov A.V. Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology, 2016, vol. 27, no. 11, p. 115305. doi: 10.1088/0957-4484/27/11/115305
18. Kho K.W., Fu C.Y., Dinish U.S., Olivo M. Clinical SERS: are we there yet? J. Biophotonics, 2011, vol. 4, no. 10, pp. 667–684. doi: 10.1002/jbio.201100047
Review
For citations:
Yakimchuk D.V., Kaniukov E.Yu., Demyanov S.E., Bundyukova V.D., Dzeinak A.V., Makoed I.I., Arzumanyan G.M., Doroshkevich N.V., Mamatkulov K.Z., Sivakov V. DEPENDENCE OF THE SURFACE-ENHANCED RAMAN SCATTERING SIGNAL ON THE SHAPE OF SILVER NANOSTRUCTURES GROWN IN THE SiO2 /n-Si POROUS TEMPLATE. Devices and Methods of Measurements. 2017;8(3):228-235. (In Russ.) https://doi.org/10.21122/2220-9506-2017-8-3-79-81