FERROMAGNETIC NANOTUBES IN PORES OF TRACK MEMBRANES FOR THE FLEXIBLE ELECTRONIC ELEMENTS
https://doi.org/10.21122/2220-9506-2017-8-3-214-221
Abstract
In the paper the template synthesis of ferromagnetic (Fe, Co, Ni) nanotubes in the pores of track membranes were studied. The aim of this work was determination of nanotubes basic structural and magnetic parameters and demonstration of the possibility of application in the flexible electronics elements.
By electrochemical deposition, ferromagnetic nanotubes with a diameter of 110 nm and an aspect ratio of 100 were formed in the pores of polyethylene terephthalate track membranes. The morphology of the obtained nanostructures were studied by scanning electron microscopy, the elemental composition was determined by the energy-dispersion analysis. Using the X-ray structural analysis, the main parameters of the crystal structure were established: lattice type, lattice parameter and average crystallite size. The magnetic properties were studied by the method of vibrational magnetometry.
It was shown that in the selected conditions of synthesis without reference to the type of ferromagnetic metals nanotubes had the same dimensions – length, diameter and wall thickness. The produced nanotubes consisted of iron, cobalt and nickel, respectively without oxides impurities. Nanotubes had a polycrystalline structure of walls with a body-centered cubic (iron), face-centered cubic (cobalt and nickel) crystal lattice. According to the main magnetic parameters, nanotubes belonged to a group of soft magnetic materials. Also, the presence of magnetic anisotropy, which is caused by the features of crystalline structure and shape of the nanostructures.
Based on the analysis of structural and magnetic characteristics of ferromagnetic nanotubes which were synthesized in the pores of track membranes, were proposed the main principles of their using in the elements’ of flexible electronics constructing (magnetic field direction sensors and magnetic memory elements).
About the Authors
E. Yu. KaniukovBelarus
Address for correspondence: Kaniukov E.Yu. – Scientific and Practical Materials Research Center of NAS of Belarus, P. Brovka str., 19, Minsk 220072, Belarus e-mail: Ka.egor@mail.ru
E. E. Shumskaya
Belarus
P. Brovka str., 19, Minsk 220072
M. D. Kutuzau
Belarus
P. Brovka str., 19, Minsk 220072
D. B. Borgekov
Kazakhstan
Abylay Hana Ave., 2/1, Astana 010008
I. E. Kenzhina
Kazakhstan
Abylay Hana Ave., 2/1, Astana 010008
A. L. Kozlovskiy
Kazakhstan
Abylay Hana Ave., 2/1, Astana 010008
M. V. Zdorovets
Kazakhstan
Abylay Hana Ave., 2/1, Astana 010008
References
1. Fink D. Fundamentals of Ion-Irradiated Polymers: Fundamentals and Applications. Vol. 1. Berlin–Heidelberg: Springer, 2004. doi: 10.1007/978-3-662-07326-1
2. Apel P.Y., Dmitriev S.N. Microand nanoporous materials produced using accelerated heavy ion beams. Adv. Nat. Sci. Nanosci. Nanotechnol., 2011, vol. 2, no. 1, pp. 13002. doi: 10.1088/2043-6262/2/1/013002
3. Kaniukov E.Y., Ustarroz J., Yakimchuk D.V., Petrova M., Terryn H., Sivakov V., Petrov A.V. Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology, 2016, vol. 27, no. 11, pp. 115305. doi: 10.1088/0957-4484/27/11/115305
4. Hoppe K., Fahrner W.R., Fink D., Dhamodoran S., Petrov A., Chandra A., Saad A., Faupel F., Chakravadhanula V.S.K., Zaporotchenko V. An ion track based approach to nanoand micro-electronics. Nucl. Instruments Methods Phys. Res. B, 2008, vol. 266, no. 8, pp. 1642–1646. doi: 10.1016/j.nimb.2007.12.069
5. Hulteen J.C., Martin C.R. A general templatebased method for the preparation of nanomaterials. J. Mater. Chem., 1997, vol. 7, no. 7, pp. 1075–1087. doi: 10.1039/a700027h
6. Mitchell D.T., Lee S.B., Trofin L., Li N., Nevanen T.K., Söderlund H., Martin C.R. Smart Nanotubes for Bioseparations and Biocatalysis. J. Am. Chem. Soc., 2002, vol. 124, no. 40, pp. 11864–11865. doi: 10.1021/ja027247b
7. Park J.H., Lee D.Y., Kim Y.-H., Kim J.K., Lee J.H., Park J.H., Lee T.-W., Cho J.H. Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly. ACS Appl. Mater. Interfaces., 2014, vol. 6, no. 15, pp. 12380–12387. doi: 10.1021/am502233y
8. Wang J., Jiu J., Nogi M., Sugahara T., Nagao S., Koga H., He P., Suganuma K. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale, 2015, vol. 7, no. 7, pp. 2926–2932. doi: 10.1039/C4NR06494A.
9. Jiu J., Suganuma K. Metallic Nanowires and Their Application. IEEE Trans. Components, Packag. Manuf. Technol., 2016, vol. 6, no. 12, pp. 1733–1751. doi: 10.1109/TCPMT.2016.2581829
10. Chang I., Park T., Lee J., Lee M.H., Ko S.H., Cha S.W. Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. J. Mater. Chem. A, 2013, vol. 1, no. 30, pp. 8541. doi: 10.1039/c3ta11699a
11. Melzer M., Mönch J.I., Makarov D., Zabila Y., Cañón Bermúdez G.S., Karnaushenko D., Baunack S., Bahr F., Yan C., Kaltenbrunner M., Schmidt O.G. Wearable Magnetic Field Sensors for Flexible Electronics. Adv. Mater., 2015, vol. 27, no. 7, pp. 1274–1280. doi: 10.1002/adma.201405027
12. Cohen-Karni T., Timko B.P., Weiss L.E., Lieber C.M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci., 2009, vol. 106, no. 18, pp. 7309–7313. doi: 10.1073/pnas.0902752106
13. Patolsky F., Zheng G., Lieber C.M. NanowireBased Biosensors. Anal. Chem., 2006, vol. 78, no. 13, pp. 4260–4269. doi: 10.1021/ac069419j
14. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I., Zdorovets M.V., Yakimchuk D.V., Shumskaya E.E., Kadyrzhanov K.K. Electrochemically deposited copper nanotubes. J. Surf. Investig. X-ray, Synchrotron Neutron Tech., 2017, vol. 11, no. 1, pp. 270–275. doi: 10.1134/S1027451017010281
15. Demyanov S.E., Kaniukov E.Y., Petrov A.V., Belonogov E.K., Streltsov E.A., Ivanov D.K., Ivanova Y.A., Trautmann C., Terryn H., Petrova M., Ustarroz J., Sivakov V. On the morphology of Si/SiO2 /Ni nanostructures with swift heavy ion tracks in silicon oxide. J. Surf. Investig. X-ray, Synchrotron Neutron Tech., 2014, vol. 8, no. 4, pp. 805–813. doi: 10.1134/S1027451014040326
16. Kozlovskiy A., Zhanbotin A., Zdorovets M., Manakova I., Ozernoy A., Kiseleva T., Kadyrzhanov K., Rusakov V., Kanyukov E. Mossbauer research of Fe/Co nanotubes based on track membranes. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms., 2016, vol. 381, pp. 103–109. doi: 10.1016/j.nimb.2016.05.026
17. Kalanda N.A., Gorokh G.G., Yarmolich M.V., Lozovenko A.A., Kanyukov E.Y. Magnetic and magnetoresistive properties of Al2 O3 –Sr2 FeMoO6–δ–Al2 O3 nanoheterostructures. Phys. Solid State, 2016, vol. 58, no. 2, pp. 351–359. doi: 10.1134/S1063783416020128
18. Wang X.W., Yuan Z.H., Fang B.C. Templatebased synthesis and magnetic properties of Ni nanotube arrays with different diameters. Mater. Chem. Phys., 2011, vol. 125, no. 1–2, pp. 1–4. doi: 10.1016/j.matchemphys.2010.08.083
19. Zhang F., Zhao D. Fabrication of ordered magnetite-doped rare earth fluoride nanotube arrays by nanocrystal self-assembly. Nano Res., 2009, vol. 2, no. 4, pp. 292–305. doi: 10.1007/s12274-009-9027-6
20. Kozlovskiy A.L., Shlimas D.I., Shumskaya A.E., Kaniukov E.Y., Zdorovets M.V., Kadyrzhanov K.K. Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes. Phys. Met. Metallogr., vol. 118, no. 2, pp. 164–169, 2017. doi: 10.1134/S0031918X17020065
21. Shumskaya A.E., Kaniukov E.Y., Kozlovskiy A.L., Zdorovets M. V., Rusakov V.S., Kadyrzhanov K.K. Structure and Physical Properties of Iron Nanotubes Obtained by Template Synthesis. Phys. Solid State, 2017, vol. 59, no. 4, pp. 784–790. doi: 10.1134/S1063783417040266
22. Kaniukov E.Y., Shumskaya E.E., Yakimchuk D.V., Kozlovskiy A.L., Ibragimova M.A., Zdorovets M.V. Evolution of the polyethylene terephthalate track membranes parameters at the etching process. J. Contemp. Phys. (Armenian Acad. Sci.), 2017, vol. 52, no. 2, pp. 155–160. doi: 10.3103/S1068337217020098
23. Kozlovskiy A., Borgekov K., Zdorovets M., Arkhangelsky E., Shumskaya A., Kanukov E. [Application of ion-track membranes in processes of direct and reverse osmosis]. Vestsi NAN Belarusi, Fiziko-tekhnicheskaya seriya [Proceeding of the National academy of sciences of Belarus, physico-technical series], 2017, vol. 1, pp. 45–51 (in Russian).
24. Yoo B., Xiao F., Bozhilov K.N., Herman J., Ryan M.A., Myung N.V. Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater., 2007, vol. 19, no. 2, pp. 296–299. doi: 10.1002/adma.200600606
25. Motoyama M., Fukunaka Y., Sakka T., Ogata Y.H. Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim. Acta, 2007, vol. 53, no. 1, pp. 205–212. doi: 10.1016/j.electacta.2007.04.122
26. Bercu B., Enculescu I., Spohr R. Copper tubes prepared by electroless deposition in ion track templates. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2004, vol. 225, no. 4, pp. 497–502. doi: 10.1016/j.nimb.2004.06.011
27. Graham L.M., Cho S., Kim S.K., Noked M., Lee S.B. Role of boric acid in nickel nanotube electrodeposition: a surface-directed growth mechanism. Chem. Commun., 2014, vol. 50, no. 5, pp. 527–529. doi: 10.1039/C3CC47183G
28. Chowdhury T., Casey D.P., Rohan J.F. Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates. Electrochem. commun., 2009,
Review
For citations:
Kaniukov E.Yu., Shumskaya E.E., Kutuzau M.D., Borgekov D.B., Kenzhina I.E., Kozlovskiy A.L., Zdorovets M.V. FERROMAGNETIC NANOTUBES IN PORES OF TRACK MEMBRANES FOR THE FLEXIBLE ELECTRONIC ELEMENTS. Devices and Methods of Measurements. 2017;8(3):214-221. (In Russ.) https://doi.org/10.21122/2220-9506-2017-8-3-214-221