Preview

Devices and Methods of Measurements

Advanced search

FERROMAGNETIC NANOTUBES IN PORES OF TRACK MEMBRANES FOR THE FLEXIBLE ELECTRONIC ELEMENTS

https://doi.org/10.21122/2220-9506-2017-8-3-214-221

Abstract

In the paper the template synthesis of ferromagnetic (Fe, Co, Ni) nanotubes in the pores of track membranes were studied. The aim of this work was determination of nanotubes basic structural and magnetic parameters and demonstration of the possibility of application in the flexible electronics elements.

By electrochemical deposition, ferromagnetic nanotubes with a diameter of 110 nm and an aspect ratio of 100 were formed in the pores of polyethylene terephthalate track membranes. The morphology of the obtained nanostructures were studied by scanning electron microscopy, the elemental composition was determined by the energy-dispersion analysis. Using the X-ray structural analysis, the main parameters of the crystal structure were established: lattice type, lattice parameter and average crystallite size. The magnetic properties were studied by the method of vibrational magnetometry.

It was shown that in the selected conditions of synthesis without reference to the type of ferromagnetic metals nanotubes had the same dimensions – length, diameter and wall thickness. The produced nanotubes consisted of iron, cobalt and nickel, respectively without oxides impurities. Nanotubes had a polycrystalline structure of walls with a body-centered cubic (iron), face-centered cubic (cobalt and nickel) crystal lattice. According to the main magnetic parameters, nanotubes belonged to a group of soft magnetic materials. Also, the presence of magnetic anisotropy, which is caused by the features of crystalline structure and shape of the nanostructures.

Based on the analysis of structural and magnetic characteristics of ferromagnetic nanotubes which were synthesized in the pores of track membranes, were proposed the main principles of their using in the elements’ of flexible electronics constructing (magnetic field direction sensors and magnetic memory elements). 

About the Authors

E. Yu. Kaniukov
Scientific and Practical Materials Research Center of NAS of Belarus
Belarus

Address for correspondence: Kaniukov E.Yu. – Scientific and Practical Materials Research Center of NAS of Belarus, P. Brovka str., 19, Minsk 220072, Belarus   e-mail: Ka.egor@mail.ru



E. E. Shumskaya
Scientific and Practical Materials Research Center of NAS of Belarus
Belarus
P. Brovka str., 19, Minsk 220072


M. D. Kutuzau
Scientific and Practical Materials Research Center of NAS of Belarus
Belarus
P. Brovka str., 19, Minsk 220072


D. B. Borgekov
Institute of Nuclear Physics; L.N. Gumilyov Eurasian National University
Kazakhstan
Abylay Hana Ave., 2/1, Astana 010008


I. E. Kenzhina
Institute of Nuclear Physics; L.N. Gumilyov Eurasian National University
Kazakhstan
Abylay Hana Ave., 2/1, Astana 010008


A. L. Kozlovskiy
Institute of Nuclear Physics; L.N. Gumilyov Eurasian National University
Kazakhstan
Abylay Hana Ave., 2/1, Astana 010008


M. V. Zdorovets
Institute of Nuclear Physics; L.N. Gumilyov Eurasian National University
Kazakhstan
Abylay Hana Ave., 2/1, Astana 010008


References

1. Fink D. Fundamentals of Ion-Irradiated Polymers: Fundamentals and Applications. Vol. 1. Berlin–Heidelberg: Springer, 2004. doi: 10.1007/978-3-662-07326-1

2. Apel P.Y., Dmitriev S.N. Microand nanoporous materials produced using accelerated heavy ion beams. Adv. Nat. Sci. Nanosci. Nanotechnol., 2011, vol. 2, no. 1, pp. 13002. doi: 10.1088/2043-6262/2/1/013002

3. Kaniukov E.Y., Ustarroz J., Yakimchuk D.V., Petrova M., Terryn H., Sivakov V., Petrov A.V. Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology, 2016, vol. 27, no. 11, pp. 115305. doi: 10.1088/0957-4484/27/11/115305

4. Hoppe K., Fahrner W.R., Fink D., Dhamodoran S., Petrov A., Chandra A., Saad A., Faupel F., Chakravadhanula V.S.K., Zaporotchenko V. An ion track based approach to nanoand micro-electronics. Nucl. Instruments Methods Phys. Res. B, 2008, vol. 266, no. 8, pp. 1642–1646. doi: 10.1016/j.nimb.2007.12.069

5. Hulteen J.C., Martin C.R. A general templatebased method for the preparation of nanomaterials. J. Mater. Chem., 1997, vol. 7, no. 7, pp. 1075–1087. doi: 10.1039/a700027h

6. Mitchell D.T., Lee S.B., Trofin L., Li N., Nevanen T.K., Söderlund H., Martin C.R. Smart Nanotubes for Bioseparations and Biocatalysis. J. Am. Chem. Soc., 2002, vol. 124, no. 40, pp. 11864–11865. doi: 10.1021/ja027247b

7. Park J.H., Lee D.Y., Kim Y.-H., Kim J.K., Lee J.H., Park J.H., Lee T.-W., Cho J.H. Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly. ACS Appl. Mater. Interfaces., 2014, vol. 6, no. 15, pp. 12380–12387. doi: 10.1021/am502233y

8. Wang J., Jiu J., Nogi M., Sugahara T., Nagao S., Koga H., He P., Suganuma K. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale, 2015, vol. 7, no. 7, pp. 2926–2932. doi: 10.1039/C4NR06494A.

9. Jiu J., Suganuma K. Metallic Nanowires and Their Application. IEEE Trans. Components, Packag. Manuf. Technol., 2016, vol. 6, no. 12, pp. 1733–1751. doi: 10.1109/TCPMT.2016.2581829

10. Chang I., Park T., Lee J., Lee M.H., Ko S.H., Cha S.W. Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. J. Mater. Chem. A, 2013, vol. 1, no. 30, pp. 8541. doi: 10.1039/c3ta11699a

11. Melzer M., Mönch J.I., Makarov D., Zabila Y., Cañón Bermúdez G.S., Karnaushenko D., Baunack S., Bahr F., Yan C., Kaltenbrunner M., Schmidt O.G. Wearable Magnetic Field Sensors for Flexible Electronics. Adv. Mater., 2015, vol. 27, no. 7, pp. 1274–1280. doi: 10.1002/adma.201405027

12. Cohen-Karni T., Timko B.P., Weiss L.E., Lieber C.M. Flexible electrical recording from cells using nanowire transistor arrays. Proc. Natl. Acad. Sci., 2009, vol. 106, no. 18, pp. 7309–7313. doi: 10.1073/pnas.0902752106

13. Patolsky F., Zheng G., Lieber C.M. NanowireBased Biosensors. Anal. Chem., 2006, vol. 78, no. 13, pp. 4260–4269. doi: 10.1021/ac069419j

14. Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I., Zdorovets M.V., Yakimchuk D.V., Shumskaya E.E., Kadyrzhanov K.K. Electrochemically deposited copper nanotubes. J. Surf. Investig. X-ray, Synchrotron Neutron Tech., 2017, vol. 11, no. 1, pp. 270–275. doi: 10.1134/S1027451017010281

15. Demyanov S.E., Kaniukov E.Y., Petrov A.V., Belonogov E.K., Streltsov E.A., Ivanov D.K., Ivanova Y.A., Trautmann C., Terryn H., Petrova M., Ustarroz J., Sivakov V. On the morphology of Si/SiO2 /Ni nanostructures with swift heavy ion tracks in silicon oxide. J. Surf. Investig. X-ray, Synchrotron Neutron Tech., 2014, vol. 8, no. 4, pp. 805–813. doi: 10.1134/S1027451014040326

16. Kozlovskiy A., Zhanbotin A., Zdorovets M., Manakova I., Ozernoy A., Kiseleva T., Kadyrzhanov K., Rusakov V., Kanyukov E. Mossbauer research of Fe/Co nanotubes based on track membranes. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms., 2016, vol. 381, pp. 103–109. doi: 10.1016/j.nimb.2016.05.026

17. Kalanda N.A., Gorokh G.G., Yarmolich M.V., Lozovenko A.A., Kanyukov E.Y. Magnetic and magnetoresistive properties of Al2 O3 –Sr2 FeMoO6–δ–Al2 O3 nanoheterostructures. Phys. Solid State, 2016, vol. 58, no. 2, pp. 351–359. doi: 10.1134/S1063783416020128

18. Wang X.W., Yuan Z.H., Fang B.C. Templatebased synthesis and magnetic properties of Ni nanotube arrays with different diameters. Mater. Chem. Phys., 2011, vol. 125, no. 1–2, pp. 1–4. doi: 10.1016/j.matchemphys.2010.08.083

19. Zhang F., Zhao D. Fabrication of ordered magnetite-doped rare earth fluoride nanotube arrays by nanocrystal self-assembly. Nano Res., 2009, vol. 2, no. 4, pp. 292–305. doi: 10.1007/s12274-009-9027-6

20. Kozlovskiy A.L., Shlimas D.I., Shumskaya A.E., Kaniukov E.Y., Zdorovets M.V., Kadyrzhanov K.K. Influence of electrodeposition parameters on structural and morphological features of Ni nanotubes. Phys. Met. Metallogr., vol. 118, no. 2, pp. 164–169, 2017. doi: 10.1134/S0031918X17020065

21. Shumskaya A.E., Kaniukov E.Y., Kozlovskiy A.L., Zdorovets M. V., Rusakov V.S., Kadyrzhanov K.K. Structure and Physical Properties of Iron Nanotubes Obtained by Template Synthesis. Phys. Solid State, 2017, vol. 59, no. 4, pp. 784–790. doi: 10.1134/S1063783417040266

22. Kaniukov E.Y., Shumskaya E.E., Yakimchuk D.V., Kozlovskiy A.L., Ibragimova M.A., Zdorovets M.V. Evolution of the polyethylene terephthalate track membranes parameters at the etching process. J. Contemp. Phys. (Armenian Acad. Sci.), 2017, vol. 52, no. 2, pp. 155–160. doi: 10.3103/S1068337217020098

23. Kozlovskiy A., Borgekov K., Zdorovets M., Arkhangelsky E., Shumskaya A., Kanukov E. [Application of ion-track membranes in processes of direct and reverse osmosis]. Vestsi NAN Belarusi, Fiziko-tekhnicheskaya seriya [Proceeding of the National academy of sciences of Belarus, physico-technical series], 2017, vol. 1, pp. 45–51 (in Russian).

24. Yoo B., Xiao F., Bozhilov K.N., Herman J., Ryan M.A., Myung N.V. Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater., 2007, vol. 19, no. 2, pp. 296–299. doi: 10.1002/adma.200600606

25. Motoyama M., Fukunaka Y., Sakka T., Ogata Y.H. Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim. Acta, 2007, vol. 53, no. 1, pp. 205–212. doi: 10.1016/j.electacta.2007.04.122

26. Bercu B., Enculescu I., Spohr R. Copper tubes prepared by electroless deposition in ion track templates. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2004, vol. 225, no. 4, pp. 497–502. doi: 10.1016/j.nimb.2004.06.011

27. Graham L.M., Cho S., Kim S.K., Noked M., Lee S.B. Role of boric acid in nickel nanotube electrodeposition: a surface-directed growth mechanism. Chem. Commun., 2014, vol. 50, no. 5, pp. 527–529. doi: 10.1039/C3CC47183G

28. Chowdhury T., Casey D.P., Rohan J.F. Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates. Electrochem. commun., 2009,


Review

For citations:


Kaniukov E.Yu., Shumskaya E.E., Kutuzau M.D., Borgekov D.B., Kenzhina I.E., Kozlovskiy A.L., Zdorovets M.V. FERROMAGNETIC NANOTUBES IN PORES OF TRACK MEMBRANES FOR THE FLEXIBLE ELECTRONIC ELEMENTS. Devices and Methods of Measurements. 2017;8(3):214-221. (In Russ.) https://doi.org/10.21122/2220-9506-2017-8-3-214-221

Views: 1138


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)