PARAMETRIC AMPLIFICATION OF THE SIGNALS IN THE ELECTROSTATIC GRAVIINERTIAL SENSOR
https://doi.org/10.21122/2220-9506-2017-8-2-108-121
Abstract
The challenges of designing simple, reliable, and high sensitivity graviinertial sensors are investigated. The sensor comprises a proof mass (PM) and is fixed with the housing by the elastic torsion suspension. PM makes small rotations under the action of gravitational forces or inertial forces.
The distinctive features of the sensor are that the differential electrostatic system provides simultaneous reading of the desired signal and a control the torsional rigidity of suspension. In addition, the PM's rotational angular velocity transforms in the alternating current flowing through the capacitors. The presence of аlternating current (AC) voltage sources allows to get the parametric amplification of AC and significantly to improve the sensitivity of the sensor. In the simplest case, the sensor does not contain any feedback circuits.
As an example, calculations of the micromechanical linear accelerations confirm that the periodic modulation of the coefficient of elastic stiffness of the suspension can significantly increase the sensitivity in the low frequency range, even in the absence of parametric resonance.
Conditions for suppressions of background current participating in the output signal from a parametric pumping due to the asymmetry of the differential circuits are set. The frequency characteristics calculations of the sensor were carried out. It is expected, that the proposed sensor design ensures minimum noise level, which can be achievable in the graviinertial sensors. This design and the constructed theory can serve as a basis for creating a wide range of graviinertial devices operating on a movable base, for example, linear and angular accelerometer, gravity gradiometer, gravimeters, and inclinometers, which can be realized in the hybrid and in the micromechanical versions.
About the Authors
I. Z. GilavdaryBelarus
Address for correspondence: Gilavdary I. - Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus e-mail: gilavdary@mail.ru
S. N. Mekid
Saudi Arabia
N. N. Riznookaya
Belarus
References
1. Gilavdary I., Riznookaya N. Stages of development and state of engineering of gravity gradiometers for moving objects (Review). Devices and Methods of Measurements, 2016, vol. 7, no. 3, pp. 122–128 (in Russian). doi: 10.21122/2220-9506-2016-7-3-235-246
2. Annecchione M., Moody M., Carroll K., Dickson D., Main B. Benefits of a high performance airborne gravity gradiometer for resource exploration. Fifth Decennial International Conference on Mineral Exploration, 2007, pp. 889–893.
3. Konecny G. Small satellites – A tool for Earth observation? XXth ISPRS Congress-Commission, 2004, vol.4. Available at: http://www.cartesia.org/geodoc/isprs2004/comm4/papers/428.pdf (accessed 27.02.2017).
4. Carroll K. Gravity gradiometry for lunar surface exploration. 42nd Lunar and Planetary Science Conference, 2011. Available at: https://www.researchgate.net/profile/Kieran_Carroll/publication/264340952_Gravity_Gradiometry_for_Lunar_Surface_Exploration/links/53d910cb0cf2631430c3a510/Gravity-Gradiometryfor-Lunar-Surface-Exploration.pdf (accessed 27.01.2017).
5. Stibrany P., Carroll K.A. The microsat way in Canada. Proc. 11th CASI Conference on Astronautics, 2001. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.199.676&rep=rep1&type=pdf (accessed 27.02.2017).
6. Carroll K.A., Spencer H., Zee R.E. An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying.Small Satellite Conference, 2016. Available at: http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3408&c ontext=smallsa (accessed 10.03.2017).
7. Spencer H. Lunette: Lunar Farside Gravity Mapping by Nanosat. 19th Annual AIAA/USU Conference on Small Satellites, 2005. Available at: http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1635&context=smallsat (accessed 19.10.2016).
8. Evstifeev M.I. The state of the art in the development of onboard gravity gradiometers. Gyroscopy and Navigation, 2017, vol. 8, no. 1, pp. 68–79. doi: 10.1134/S2075108717010047
9. Ghose K., Dandavino S., Meyer H., Chamot B. and j.-f. labrecque-piedboeuf et al. Gravity gradient earth sensor experiment on rexus 11. 21st ESA Symposium on European Rocket and Balloon Programmes, Thun, Switzerland, June 9–13, 2013. Available at: https://infoscience.epfl.ch/record/187717/files/ghose%20ESA%20Thun%202013.pdf (accessed 12.11.2016).
10. Allen J. Micro-System Inertial Sensing Technology Overview. Albuquerque, New Mexico, 2009, 32 p.
11. Tutorial: Noise in micromechanical systems. MEMS material. Available at:http://www.kaajakari.net/~ville/research/tutorials/tutorials.shtml (accessed 19.10.2016).
12. Li J., Fang J., Du M., Dong H. Analysis and fabrication of a novel MEMS pendulum angular accelerometer with electrostatic actuator feedback. Microsystem technologies, 2013, vol. 19, no. 1, pp. 9–16.
13. Yazdi N., Ayazi F., Najafi K. Micromachined inertial sensors. Proceedings of the IEEE, 1998, vol. 86, no. 8, pp. 1640–1659.
14. Vasilescu G. Electronic noise and interfering signals: principles and applications. Springer Science & Business Media, 2006, 709 p.
15. Cuperus R. MEMS based gravity gradiometer for Space Application. Available at: https://escies.org/download/webDocumentFile?id=7188 (accessed 19.10.2016).
16. Jiang X., Wang F., Kraft M., Boser B.E. An integrated surface micromachined capacitive lateral accelerometer with 2µG/Ц Braginskii V.B., Manukin, A.B. Measurement of weak forces in physics experiments. Chicago, University of Chicago Press, 1977, 161 p.
17. Ghose K. MEMS Inertial Sensor to Measure the Gravity Gradient Torque in Orbit. Pour l'obtention du grade de docteur ès sciences école polytechnique fédérale de Lausanne, 2012, no. 5231. Available at:http://infoscience.epfl.ch/record/169608/files/EPFL_TH5231.pdf (accessed 19.10.2016).
18. Flokstra J., Cuperus R., Wiegerink R.J., van Essen M.C. MEMS based gravity gradiometer for future planetary missions. Cryogenics, 2009, vol. 49, iss. 11, pp. 665–668. doi: org/10.1016/j.cryogenics.2008.12.019
19. Vasilescu G. Electronic Noise and Interfering Signals. Principles and Applications. Springer, 2005, 715 p.
20. Rugar D., Grutter P. Mechanical Parametric Amplification and Thermomechanical Noise Squeezing.Physical Review Letters, 1991, vol. 67, no. 6, pp. 699–702.
21. Carr D.W., Evoy S., Sekaric L., Craighead H.G., Parpia J.M. Parametric amplification in a torsional microresonator. Applied Physics Letters, 2000, vol. 77, no. 10, pp. 1545–1547.
22. Rescia S. Precise Measurements of Small Linea and Angular Displacements with Capacitance Methods.Brookhaven National Laboratory. Available at: http:// www.bnl.gov/edm/papers/Sergio_Rescia_020118.pdf (accessed 19.02.2017).
23. Zhang W., Turner K. Noise analysis in parametric resonance based mass sensing. Proceedings of IMECE04 2004 ASME International Mechanical Engineering Congress and Exposition. Anaheim, 2004, 5 p.
24. Butikov E.I. Parametric excitation of a linear oscillator. European Journal of Physics, 2004, vol. 25, no. 4, pp. 535–554.
25. Schmidt G. Parametererregte Schwingungen. Berlin; VEB Deutscher Verlag der Wissenschaften, 1975, 313 p. (publishing European journal of physics. Eur. J. Phys, 2004, vol. 25, pp. 535–554.)
26. Zhang W., Turner K. Application of parametric resonance amplification silicon micro-oscillator based mass sensor. Sensors and Actuators A: Physical, 2005, vol. 122, no. 1, pp. 23–30.
27. Yang Y.T., Callegari C., Feng X.L., Ekinci K.L., Roukes M.L. Zeptogram-Scale Nanomechanical Mass Sensing. Nano Letters, 2006, vol. 6, no. 4, pp. 583–586.
28. Yang Y.T. Phase noise of nanoelectromechanical systems. Pasadena, California Institute of Technology, 2004, 157 p.
29. Cleland A.N. Thermomechanical noise limits on parametric sensing with nanomechanical resonators.New Journal of Physics, 2005, vol. 7, no. 1, p. 235.
30. Yie Z., Zielke M.A., Burgner C.B., Turner K.L. Comparison of parametric and linear mass detection in the presence of detection noise. Journal of Micromechanics and Microengineering, 2011, vol. 21, no. 2, pp. 025027.
31. Den Hartog J.P. Mechanical Vibrations. New York, dc McGraw-Hill Book Company, 1956, 464 p.
32. Gilavdary I., Mekid S., Riznookaya N. [Controlling sensitivity of the sensor with differential electrostatic transducers]. Pribory i metody izmerenii [Devices and Methods of Measurements]. 2015, vol. 6, no. 2, pp. 163−172 (in Russian).
33. Gilavdary I., Mekid S., Riznookaya N., Abdul Sater A. Static and dynamic stability of gravi-inertial sensors with capacitive differential system of sensitivity adjustment. Pribory i metody izmerenii [Devices and Methods of Measurements]. 2016, Vol. 7, no. 1, pp. 16 – 23. doi: 10.21122/2220-9506-2016-7-1-16-23
34. Changhoug Guan. Development of a Closed-loop MEMS Capacitive Force Sensor. A Thesis of Master of Science for the Degree Mechanical Engineering. Raleigh. North Carolina, 2009, 90 p.
35. Christophe B., Marque J-P., Foulon B. Accelerometers for the ESA GOCE mission: one year of in-orbit results. GPHYS SYMPOSIUM, Paris, 2010, 26 p.
36. Silvestrin P. Control and navigation aspects of the new Earth observation missions of the European Space. Annual Reviews in Control, 2005, vol. 29, no. 2, pp. 247–260.
37. Steiger C., Romanazzo M., Emanuelli P.P., Floberghagen R., Fehringer M. The Deorbiting of ESA’s Gravity Mission GOCE–Spacecraft Operations in Extreme Drag Conditions. Proceedings SpaceOps, Pasadena, USA, 2014, 12 p.
38. Miller A.H. The theory and operation of the Eotvos torsion balance. The Journal of the Royal Astronomical Society of Canada, vol. 28, no. 1, January, 1934, 34 p.
39. Metzger E.H., Jirdtano A., Affleck C. Satellite borne gravity gradiometer study. Buffalo, NASA Goddard space flight center, 1976, 62 p.
Review
For citations:
Gilavdary I.Z., Mekid S.N., Riznookaya N.N. PARAMETRIC AMPLIFICATION OF THE SIGNALS IN THE ELECTROSTATIC GRAVIINERTIAL SENSOR. Devices and Methods of Measurements. 2017;8(2):108-121. https://doi.org/10.21122/2220-9506-2017-8-2-108-121