Preview

Devices and Methods of Measurements

Advanced search

NUMERICAL SIMULATION OF ELECTRIC CHARACTERISTICS OF DEEP SUBMICRON SILICON-ON-INSULATOR MOS TRANSISTOR

https://doi.org/10.21122/2220-9506-2016-7-2-68-81

Abstract

Today submicron silicon-on-insulator (SOI) MOSFET structures are widely used in different electronic components and also can be used as sensing elements in some applications. The development of devices based on the structures with specified characteristics is impossible without computer simulation of their electric properties. The latter is not a trivial task since many complicated physical processes and effects must be taken into account. In current study ensemble Monte Carlo simulation of electron and hole transport in deep submicron n-channel SOI MOSFET with 100 nm channel length is performed. The aim of the study is investigation of the influence of interband impact ionization process on the device characteristics and determination of the transistor operation modes when impact ionization process starts to make an appreciable influence on the device functioning. Determination of the modes is very important for adequate and accurate modeling of different devices on the basis of SOI MOSFET structures. Main focus thereby is maid on the comparison of the use of two models of impact ionization process treatment with respect to their influence on the transistor current-voltage characteristics. The first model is based on the frequently used Keldysh approach and the other one utilizes the results obtained via numerical calculations of silicon band structure. It is shown that the use of Keldysh impact ionization model leads to much faster growth of the drain current and provides earlier avalanche breakdown for the SOI MOSFET. It is concluded that the choice between the two considered impact ionization models may be critical for simulation of the device electric characteristics. 

About the Authors

A. V. Borzdov
Belarusian State University
Belarus


V. M. Borzdov
Belarusian State University
Belarus

Address for correspondence: Borzdov V.M. –  Belarusian State University, Nezavisimosty Ave., 4, 220030, Minsk, Belarus e-mail: borzdov@bsu.by



N. N. Dorozhkin
Belarusian State University
Belarus


References

1. O. Kononchuk and B. -Y. Nguyen Silicon-on-insulator (SOI) Technology. Manufacture and Applications / eds., Woodhead Publishing, Sawston, Cambridge, UK, 2014, 474 p.

2. Sakurai T., Matsuzawa A., Douseki T. Fully-Depleted SOI CMOS Circuits and Technology for UltralowPower Applications, Springer, Dordrecht, The Netherlands, 2006, 411 p.

3. Celler G.K., Cristoloveanu S. Frontiers of siliconon-insulator. Journal of Applied Physics, 2003, vol. 93, no. 9, pp. 4955–4978.

4. Xin’an C., Qing’an H. A novel SOI MOSFET electrostatic field sensor. Journal of Semiconductors, 2010, vol. 31, no. 4, pp. 045003-1–045003-4.

5. Du W., Inokawa H., Satoh H., Ono A. SOI metaloxide-semiconductor field-effect transistor photon detector based on single-hole counting. Optics Letters, 2011, vol. 36, no 15, pp. 2800–2802.

6. Du W., Inokawa H., Satoh H., Ono A. Singlephoton detection by a simple silicon-on-insulator metaloxide-semiconductor field-effect Transistor. Japanese Journal of Applied Physics, 2012, vol. 51, pp. 06FE011–06FE01-4.

7. Sampedro C., Gamiz F., Godoy A., JimenezMolinos F. Quantum Ensemble Monte Carlo simulation of silicon-based nanodevices. Journal of Computational Electronics, 2007, no. 6, pp. 41–44.

8. Rengel R., Martin M.J., Gonzalez T., Mateos J., Pardo D., Dambrine G., Raskin J.-P., Danneville F. A microscopic interpretation of the RF noise performance of fabricated FDSOI MOSFETs. IEEE Transactions on Electron Devices, 2006, vol. 53, no. 3, pp. 523–532.

9. Zhevnyak O., Borzdov V., Borzdov A., Pozdnyakov D., Komarov F. Monte Carlo study of influence of channel length and depth on electron transport in SOI MOSFETs. Proceedings of SPIE, 2008, vol. 7025, pp. 70251L-1–70251L-8.

10. Gamiz F., Sampedro C., Donetti L., Godoy A. Monte-Carlo simulation of ultra-thin film siliconon-insulator MOSFETs. International Journal of High Speed Electronics and Systems, 2013, vol. 22, no. 1, pp. 1350001-1–1350001-32.

11. Fischetti M.V., Laux S.E. Monte Carlo analysis of electron transport in small semiconductor devices including band structure and space-charge effects. Physical Review B, 1988, vol. 38, no 14, pp. 9721–9745.

12. Duncan A., Ravaioli U., Jacumeit J. Fullband Monte Carlo investigation of hot carrier trends in the scaling of metal-oxide-semiconductor field-effect transistors. IEEE Transactions on Electron Devices, 1998, vol. 45, no. 4, pp. 867–876.

13. Buffler F.M., Schenk A., Fichtner W. Efficient Monte Carlo device modeling. IEEE Transactions on Electron Devices, 2000, vol. 47, no. 10, pp. 1891–1897.

14. Donetti L., Gamiz F., Biel B., Sampedro C. Twoband k·p model for Si-(110) electron devices. Journal of Applied Physics, 2013, vol. 114, pp. 073706-1–073706-7.

15. Rengel R., Pardo D., Martin M.J. A physically based investigation of the small-signal behaviour of bulk and fully-depleted silicon-on-insulator MOSFETs for microwave applications. Semiconductor Science and Technology, 2004, vol. 19, pp. 634–643.

16. Borzdov A.V., Borzdov V.M., V’yurkov V.V. Monte Carlo simulation of hot electron transport in deep submicron SOI MOSFET. Proceedings of SPIE, 2014, vol. 9440, pp. 944013-1–944013-7.

17. Hockney R.W., Eastwood J.W. Computer simulations using particles, McGraw-Hill, New York, 1981, 640 p.

18. Jacoboni C., Lugli P. The Monte Carlo method for semiconductor device simulation, Springer, Wien– New York, 1989, 357 p.

19. Gonzalez T., Pardo D. Physical models of ohmic contact for Monte Carlo device simulation. Solid-State Electronics, 1996, vol. 39, no. 4, pp. 555–562.

20. Jacoboni C., Reggiani L. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Reviews of Modern Physics, 1983, vol. 55, no. 3, pp. 645–705.

21. Rodriguez-Bolivar S., Gomez-Campos F.M., Carceller J.E. Simple analytical valence band structure including warping and non-parabolicity to investigate hole transport in Si and Ge. Semiconductor Science and Technology, 2005, no. 20, pp. 16–22.

22. Rodriguez-Bolivar S., Gomez-Campos F.M., Gamiz F., Carceller J.E. Implications of nonparabolicity, warping, and inelastic phonon scattering on hole transport in pure Si and Ge within the effective mass framework. Journal of Applied Physics, 2005, vol. 97, pp. 013702- 1–013702-10.

23. Gomez-Campos F.M., Rodriguez-Bolivar S., Carceller J.E. An efficient Monte Carlo procedure for studying hole transport in doped semiconductors. Journal of Computational Electronics, 2004, no. 3, pp. 329–332.

24. Keldysh L.V. Concerning the theory of impact ionization in semiconductors. Soviet Physics JETP, 1965, vol. 21, no. 6, pp. 1135–1144.

25. Kane E.O. Electron scattering by pair production in silicon. Physical Review, 1967, vol. 159, no. 3, pp. 624–631.

26. Fischetti M.V., Laux S.E., Crabbe E. Understanding hot-electron transport in semiconductor devices. Journal of Applied Physics, 1995, vol. 78, no. 2, pp. 1058–1087.

27. Ridley B.K. Soft-threshold lucky drift theory of impact ionization in semiconductors. Semiconductor Science and Technology, 1987, no. 22, pp. 116–122.

28. Speransky D., Borzdov A., Borzdov V. Impact ionization process in deep submicron MOSFET. International Journal of Microelectronics and Computer Science, 2012, vol. 3, no.1, pp. 21–24.

29. Borzdov V.M., Borzdov A.V., Speransky D.S., V’yurkov V.V., Orlikovsky A.A. Evaluation of the effective threshold energy of interband impact ionization in a deep-submicron silicon n-channel MOS transistor. Russian Microelectronics, 2014, vol. 43, no. 3, pp 189–193.

30. Sano N., Aoki T., Tomizawa M., Yoshii A. Electron transport and impact ionization in Si. Physical Review B, 1990, vol. 41, no. 17, pp. 12122–12128.

31. Sano N., Yoshii A. Impact ionization rate near thresholds in Si. Journal of Applied Physics, 1994, vol. 75, no. 10, pp. 5102–5105.

32. Kamakura Y., Mizuno H., Yamaji M., Morifuji M., Taniguchi K., Hamaguchi C., Kunikiyo T., Takenaka M. Impact ionization model for full band Monte Carlo simulation. Journal of Applied Physics, 1994, vol. 75, no. 7, pp. 3500–3507.

33. Kunikiyo T., Takenaka M., Morifuji M., Taniguchi K., Hamaguchi C. A model of impact ionization due to the primary hole in silicon for a full band Monte Carlo simulation. Journal of Applied Physics, 1996, vol. 79, no. 10, pp. 7718–7725.


Review

For citations:


Borzdov A.V., Borzdov V.M., Dorozhkin N.N. NUMERICAL SIMULATION OF ELECTRIC CHARACTERISTICS OF DEEP SUBMICRON SILICON-ON-INSULATOR MOS TRANSISTOR. Devices and Methods of Measurements. 2016;7(2):161-168. https://doi.org/10.21122/2220-9506-2016-7-2-68-81

Views: 1146


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)