Preview

CONTINUOUS-WAVE MICROCHIP LASER GENERATION OF Tm:KLu(WO4)2 AND Tm:KY(WO4)2 CRYSTALS

https://doi.org/10.21122/2220-9506-2016-7-2-122-128

Abstract

Diode-pumped solid-state lasers are attractive for a variety of practical applications in many fields of human activity due to their high efficiency, compactness, and long durability. For applications in remote sensing lasers emitting in the spectral range of about 2 microns are required. Materials doped with trivalent thulium ions are promising active media emitting in this spectral range. Potassium rare-earth tungstates are attractive materials among Tm-doped crystals due to their suitable characteristics, such as high values of absorption and stimulated emission cross sections, incignificant concentration quenching of luminescence, well-proven technology of the high quality crystals growth. The purpose of this paper was to compare lasing properties of lasers based on potassium lutetium and potassium yttrium tungstate crystals doped with thulium ions in continuous-wave regime. Experiments were carried out with a diode pumping in microchip cavity configuration. The maximum power of laser radiation at 1947 nm of 1010 mW was obtained with Tm:KY(WO4)2 crystal with the slope efficiency with respect to the absorbed pump power of 51 %. When Tm:KLu(WO4)2 crystal was utilized an output power of 910 mW at 1968 nm wavelength with the slope efficiency of 38 % was obtained. With Tm:KLu(WO4)2 laser a tuning range over 160 nm range was realized with a prism inserted into the laser cavity. 

About the Authors

O. P. Dernovich
Belarusian National Technical University
Belarus

Address for correspondence: Dernovich O.P. – Research Center for Optical Materials and Technologies Belarusian National Technical University, Nezavisimosty Ave., 65, 220013, Minsk, Belarus e-mail: pochta.dop@gmail.com



S. V. Kurilchik
Belarusian National Technical University
Belarus
Research Center for Optical Materials and Technologies


N. V. Gusakova
Belarusian National Technical University
Belarus
Research Center for Optical Materials and Technologies


N. V. Kuleshov
Belarusian National Technical University
Belarus
Research Center for Optical Materials and Technologies


References

1. Veronesi S., Jia Z., Parisi D., Damiano E., Mu W., Yin Y., Tonelli M., Tao X. Spectroscopy and diode pumped laser emission in (Lux Gd(1-x)) 3 Ga5 O12:Tm3+ single crystal. J. Phys. D: Appl. Phys, 2015, vol. 48, no. 38, pp. 385302.

2. Dalfsen K., Aravazhi S., Grivas C., GarcíaBlanco S.M., Pollnau M. On the efficiency of Tmdoped 2-μm lasers. Proc. SPIE, 2015, vol. 9342, pp. 93421U- 1–93421U- 6.

3. Serres J.M., Mateos X., Loiko P., Yumashev K., Kuleshov N., Petrov V., Griebner U., Aguiló M., Díaz F. Diode-pumped microchip Tm:KLu(WO4 ) 2 laser with more than 3 W of output power. Opt. Lett., 2014, vol. 39, no. 14, pp. 4247–4250.

4. Scholle K., Lamrini S., Koopmann P., Fuhrberg P. 2 μm Laser Sources and Their Possible Applications. Frontiers in Guided Wave Optics and Optoelectronics. B.  Pal, ed., Intech, Croatia, 2010, pp. 471–500.

5. Batay, L.E., Busko D.N., Vodchits A.I., Voitikov S.V., Orlovich V.A., Ulastchik V.S., Gorbunova N.B., Kulchitskii V.A. Laser Coagulation of Tissues by 1.6 μm and 2 μm Laser Radiation. Proc. SPIE, 2007, vol. 6734, pp. 67341M-1–67341M-5.

6. Barnes N.P., Walsh B.M., Reichle D.J., DeYoung R.J. Tm: fiber lasers for remote sensing. Opt. Mater., 2009, vol. 31, pp. 1061–1064.

7. Singh U.N., Walsh B.M., Yu J., Petros M., Kavaya M., Refaat T.F., Barnes N.P. Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing. Opt. Mater. Exp., 2015, vol. 5, no. 4, pp. 827–837.

8. Sorokina, I.T., Vodopyanov K.L. eds. Crystalline Mid-Infrared Lasers. Solid-State Mid-Infrared Laser Sources, vol. 89, Springer Topics in Applied Physics, Springer-Verlag, Berlin, 2003, pp. 255–351.

9. Walsh B.M. Review of Tm and Ho Materials: Spectroscopy and Lasers. Laser Phys., 2009, vol. 19, no.  4, pp. 855–866.

10. Henderson S.M., Suni P.J.M., Hale C.P., Hannon S.M., Magee J.R., Bruns D.L., Yuen E.H. Coherent Laser Radar at 2 μm Using Solid-State Lasers. IEEE Transactions on Geo-science and remote sensing, 1993, vol. 31, no. 1. pp. 4–15.

11. Miller, A. and Finlayson D.M. eds. Laser Sources and Applications, vol. 47, Scottish Graduate Series, CRC Press, 1997, p. 492.

12. Kisel V.E., Troshin A.E., Shcherbitsky, V.G., Kuleshov N.V. and Pavlyuk A.A. 0.5W efficient continuous wave Tm:KY(WO4 )2 laser. CLEO: 2004, OSA Technical Digest (CD) (Optical Society of America, 2004), paper CThT61.

13. Pujol M.C., Cascales C., Aguiló M., Díaz F. Crystal growth, crystal field evaluation and spectroscopy for thulium in monoclinic KGd(WO4 )2 and KLu(WO4 )2 laser crystals. J. Phys.: Condens. Matter., 2008, vol. 20, no. 34, p. 345219.

14. Schmidt A., Choi S.Y., Yeim D., Rotermund F., Mateos X., Segura M., Diaz. F., Petrov V. and Griebner U. Femtosecond Pulses near 2 µm from a Tm:KLuW Laser Mode-Locked by a Single-Walled Carbon Nanotube Saturable Absorber. Appl. Phys. Exp., 2012, vol. 5, no. 9, p. 092704.

15. Gaponenko M.S., Loiko P.A., Gusakova N.V., Yumashev K.V., Kuleshov N.V., Pavlyuk A.A. Thermal lensing and microchip laser performance of Ng -cut Tm3+:KY(WO4 )2 crystal. Appl. Phys. B, 2012, vol. 108, pp. 603–607.

16. Gaponenko M.S., Kuleshov N., Südmeyer T. Microchip Tm:KYW Laser with 2.5 W of Output Power. CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SF1F.6.


Review

For citations:


Dernovich O.P., Kurilchik S.V., Gusakova N.V., Kuleshov N.V. CONTINUOUS-WAVE MICROCHIP LASER GENERATION OF Tm:KLu(WO4)2 AND Tm:KY(WO4)2 CRYSTALS. Devices and Methods of Measurements. 2016;7(2):122-128. (In Russ.) https://doi.org/10.21122/2220-9506-2016-7-2-122-128

Views: 1214


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)