Preview

Приборы и методы измерений

Расширенный поиск

ИМПУЛЬСНЫЙ ВКР-ЛАЗЕР НА KGd(WO4)2: СУЖЕНИЕ ШИРИНЫ ЛИНИИ ИСПУСКАНИЯ

Аннотация

Ширина линии испускания импульсного ВКР-лазера на KGd(WO4)2 экспериментально проанализирована для различных конфигураций резонаторов ВКР-лазера и лазера накачки: при узкой и широкой ширине линии испускания лазера накачки; в присутствии и отсутствии элементов, сужающих линию испускания, в резонаторе ВКР-лазера; в присутствии и отсутствии затравочного излучения в резонаторе ВКР-лазера. Объяснены преимущества использования лазера накачки с узкой шириной линии испускания в комбинации с элементами, сужающими линию испускания в резонаторе ВКР-лазера, для эффективного сужения ширины линии ВКР-излучения. Продемонстрированы импульсы с пиковой мощностью 20 кВт на длине волны 1156 нм с шириной линии излучения 0,43 см-1 в ВКР-лазере на кристалле KGW с затравочным излучением.

Об авторе

В. Г. Савицкий
Институт фотоники, университет Страфклайд, г. Глазго
Великобритания


Список литературы

1. Handbook of Optoelectronics (Two-Volume Set), CRC Press, 2010.

2. Amann M.-C., Bosch T.M., Lescure M., Myllylae R.A., Rioux M. Laser ranging: a critical review of unusual techniques for distance measurement. Opt. Eng., 2001, vol. 40, pp. 10–19.

3. Clark G.L., Harris E.D. High Power Laser Amplifier Chain Techniques, Defense Technical Information Center, 1965.

4. Nicolaescu R., Fry E.S., Walther T. Generation of near-Fourier-transform-limited high-energy pulses in a chain of fiber-bulk amplifiers, Opt. Lett., 2001, vol. 26, pp. 13–15.

5. Renjie Z., Wei S., Petersen E., Chavez-Pirson A., Stephen M., Peyghambarian N. Transform-Limited, Injection Seeded, Q-Switched, Ring Cavity Fiber Laser, Journal of Lightwave Technology, 2012, vol. 30, pp. 2589–2595.

6. Woodbury E.J., Ng W.K. Ruby Laser Operation in near IR. Proceedings of the Institute of Radio Engineers, 1962, vol. 50, pp. 2367–2367.

7. White J.C., Henderson D. Anti-Stokes Raman laser, Physical Review A, 1982, vol. 25, pp. 1226–1229.

8. Holliday J.N. Design of a XeF-pumped second Stokes amplifier for blue-green production in H2, Opt. Lett., 1983, vol. 8, pp. 12–14.

9. Gad G.M.A., Eichler H.J., Kaminskii A.A. Highly efficient 1.3-mm second-Stokes PbWO4 Raman laser, Opt. Lett., 2003, vol. 28, pp. 426–428.

10. Dashkevich V.I., Orlovich V.A., Shkadarevich A.P. Intracavity Raman laser generating a third stokes component at 1.5 mm, Journal of Applied Spectroscopy, 2009, vol. 76, pp. 685–691.

11. Zhu H., Duan Y., Zhang G., Huang C., Wei Y., Shen H., Zheng Y., Huang L., Chen Z. Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light, Opt. Express, 2009, vol. 17, pp. 21544–21550.

12. Dashkevich V.I., Orlovich V. A. Ring solid-state Raman laser at 1538 nm, Laser Physics Letters, 2011, vol. 8, pp. 661–667.

13. Lubeigt W., Savitski V.G., Bonner G.M., Geoghegan S.L., Friel I., Hastie J.E., Dawson M.D., Burns D., Kemp A.J. 1.6 W continuous-wave Raman laser using low-loss synthetic diamond, Opt. Express, 2011, vol. 19, pp. 6938–6944.

14. Savitski V.G., Friel I., Hastie J.E., Dawson M.D., Burns D., Kemp A.J. Characterization of SingleCrystal Synthetic Diamond for Multi-Watt Continuous-Wave Raman Lasers, IEEE J. Quantum Electron, 2012, vol. 48, pp. 328–337.

15. Bonner G.M., Lin J., Kemp A.J., Wang J., Zhang H., Spence D.J., Pask H.M. Spectral broadening in continuous-wave intracavity Raman lasers, Opt. Express, 2014, vol. 22, pp. 7492–7502.

16. Yumashev K.V., Savitski V.G., Kuleshov N.V., Pavlyuk A.A., Molotkov D.D., Protasenya A.L. Laser performance of Ng-cut flash-lamp pumped Nd:KGW at high repetition rates, Appl. Phys. B-Lasers Opt., 2007, vol. 89, pp. 39–43.

17. Loiko P.A., Kisel V.E., Kondratuk N.V., Yumashev K.V., Kuleshov N.V., Pavlyuk A.A. 14 W high-efficiency diode-pumped cw Yb:KGd(WO4)2 laser with low thermo-optic aberrations, Opt. Mater., 2013, vol. 35, pp. 582–585.

18. Kravtsov N.V., Naumkin N.I., Protasov V.P. Characteristics of the dynamics of stimulated Raman scattering in a gas excited by a train of short pulses, Soviet Journal of Quantum Electronics, 1975, vol. 5, pp. 864–865.

19. Band Y.B., Ackerhalt J.R., Krasinski J.S., Heller D.F. Intracavity Raman lasers, Quantum Electronics, IEEE Journal, 1989, vol. 25, pp. 208–213.

20. Pask H.M. Continuous-wave, all-solid-state, intracavity Raman laser, Opt. Lett., 2005, vol. 30, pp. 2454–2456.

21. Raman C.V., Krishnan K.S. A new type of secondary radiation, Nature, 1928, vol. 121, pp. 501– 502.

22. Hodgson N., Weber H. Laser Resonators and Beam Propagation. Fundamentals, Advanced Concepts, Applications, Springer Series in Optical Sciences, Springer New York, 2005.

23. Erickson L.E., Szabo A. Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity, Applied Physics Letters, 1971, vol. 18, pp. 433–435.

24. Barnes N.P., Walsh B.M. Amplified spontaneous emission-application to Nd:YAG lasers, Quantum Electronics, IEEE Journal, 1999, vol. 35, pp. 101– 109.

25. Bado P., Bouvier M., Coe J.S. Nd:YLF modelocked oscillator and regenerative amplifier, Opt. Lett., 1987, vol. 12, pp. 319–321.

26. Schulz P.A. Henion S.R. 5-GHz mode locking of a Nd:YLF laser, Opt. Lett., 1991, vol. 16, pp. 1502– 1504.

27. Spence D.J., Dekker P., Pask H.M. Modeling of Continuous Wave Intracavity Raman Lasers, Selected Topics in Quantum Electronics, IEEE Journal, 2007, vol. 13, pp. 756–763.

28. Penzkofer A., Laubereau A., Kaiser W. High-Intensity Raman Interactions, Prog. Quantum Electron., 1979, vol. 6, pp. 56–140.

29. Wang C.-S. Theory of Stimulated Raman Scattering, Physical Review, 1969, vol. 182, pp. 482– 494.

30. Raymer M.G., Mostowski J. Stimulated Raman scattering: Unified treatment of spontaneous initiation and spatial propagation, Physical Review A, 1981, vol. 24, pp. 1980–1993.

31. Nonlinear spectroscopy, North-Holland and Publishing Co., 1977.

32. Akhmanov S.A., Djakov Yu.Ye., Chirkin A.S. Vvedeniye v statisticheskuyu radiofiziku i optiku [Introduction to statistical radiophysics and optics]. Moskow, Nauka Publ., 1981 (in Russian).

33. Chirkov V.A., Gorelik V.S., Peregudov G.V., Sushchinskii M.M. Investigation of the line width of stimulated Raman scattering, JETP Letters, 1969, vol. 10, pp. 267–269.

34. Dashkevich V.I., Timofeyeva G.I., Dementyev A.S. [Raman lasers on Ba(NO3) and KGd(WO4)2 crystals: a comparative analysis under pumping on l=1351 nm]. Lazernaya fizika i opticheskiye tekhnologii: materialy IX Mezhdunar. konf. [Laser physics and optical technologies: IX Internat. conf. proceedings], Grodno, 2012, pp. 34–37 (in Russian).

35. Fan L., Fan Y.-X., Li Y.-Q., Zhang H., Wang Q., Wang J., Wang H.-T. High-efficiency continuouswave Raman conversion with a BaWO4 Raman crystal, Opt. Lett., 2009, vol.34, pp. 168–1689.

36. Basiev T.T., Sobol A.A., Zverev P.G., Osiko V.V., Powell R.C. Comparative Spontaneous Raman Spectroscopy of Crystals for Raman Lasers, Appl. Opt., 1999, vol. 38, pp. 594–598.

37. Anokhov S.P., Marusiy T.Ya., Soskin M.S. Perestraivayemyye lazery [Tunable lasers]. Moskow, Radio i svyaz Publ., 1987 (in Russian).


Рецензия

Для цитирования:


Савицкий В.Г. ИМПУЛЬСНЫЙ ВКР-ЛАЗЕР НА KGd(WO4)2: СУЖЕНИЕ ШИРИНЫ ЛИНИИ ИСПУСКАНИЯ. Приборы и методы измерений. 2015;6(1):18-25.

For citation:


Savitski V.G. PULSED KGd(WO4)2 RAMAN LASER: TOWARDS EMISSION LINEWIDTH NARROWING. Devices and Methods of Measurements. 2015;6(1):18-25.

Просмотров: 1127


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)