Preview

MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES

Abstract

The article presents results of modelling of ring-shaped waveguide tool for ultrasonic treatment of biological materials, particularly malignant tumours, and testing of their mechanical properties. Harmonic analysis of forced flexural vibration of the waveguide using ANSYS software and APDL programming language was implemented for determination of waveguide geometric parameters providing its resonance for the given excitation frequency. The developed finite element model accounts for interaction between the waveguide and tumour tissue as well as initial prestressing of tissue radially compressed by the waveguide. Resonant curves of the waveguide in terms of its thickness and diameter are calculated and presented. Principle of application of the developed modeling technique for extraction of diagnostic data on mechanical properties of biological tissues is described.

About the Authors

V. T. Minchenya
Belarusian National Technical University
Belarus


D. A. Stepanenko
Belarusian National Technical University
Belarus


A. I. Bobrovskaya
Belarusian National Technical University
Belarus


References

1. Jernberg, A. Ultrasound, ions and combined modalities for increased local tumour cell death in radiation therapy: PhD thesis / A. Jernberg. Karolinska Institutet, Stockholm, – 2007 – 35 p.

2. Luo, L. Ultrasound absorption and entropy production in biological tissue: a novel approach to anticancer therapy / L. Luo [et al] // Diagnostic Pathology. – 2006. – Vol. 1.– Article 35.

3. Lejbkowicz, F. Distinct sensitivity of normal and malignant cells to ultrasound in vitro / F. Lejbkowicz, S. Salzberg. // Environmental Health Perspective. – 1997. – Vol. 105, Suppl. 6.– P. 1575–1578.

4. Николаев, Г.А. Ультразвуковая технология в хирургии / Г.А. Николаев, В.И. Лощилов. М., 1980. 272 с.

5. Пономаренко, Н.В. Возможности применения низкоинтенсивного ультразвука в качестве модификатора лучевой терапии экспериментальных опухолей штаммов саркомы M-1 и альвеолярного рака печени PC-1 / Н. В. Пономаренко, Н.И. Крутилина, Е.Н. Александрова. // Онкологический журнал. – 2008. – Т. 2, № 4 (8).– С. 41–48.

6. Чиж, Д.В. Сочетанное влияние переменного магнитного поля, низкочастотного ультразвука и ионизирующего излучения на перевиваемые опухоли (M-1, PC-1) в эксперименте / Д.В. Чиж, Н.И. Крутилина, Л.Б. Пархоменко. // Ars Medica. – 2010. – № 1 (21).– С. 84–88.

7. Способ комбинированной терапии саркомы у крысы : пат. Республики Беларусь на изобретение № 13765, МПК A61N 5/06, 7/00. / Н.В. Пономаренко [и др.] – Заявл. 31.07.2008; опубл. 30.10.2010; приоритет 31.07.2008.

8. Устройство для ультразвукового воздействия на опухоль : пат. Республики Беларусь на изобретение № 13801, МПК A61N 7/00. / Н.В. Пономаренко [и др. ] – Заявл. 31.07.2008; опубл. 30.12.2010; приоритет 31.07.2008.

9. Frank, S. Portable hardness testing – principles and applications / S. Frank // NDT.net – The eJournal of Nondestructive Testing. – 2002. – Vol. 7, №. 10. Online:http://www.ndt.net/article/ecndt02/109/109.htm

10. Hemsel, T. Resonant vibrating sensors for tactile tissue differentiation / T. Hemsel [et. al.] // Journal of Sound and Vibration. –2007. – Vol. 308. – P. 441–446.

11. Lang, T.E. Vibration of thin circular rings. Part I. Solution for modal characteristics and forced excitation. / T.E. Lang –Jet Propulsion Laboratory Technical Report №. 32–261. – Pasadena, 1962. – 21 p.

12. Тимошенко, С.П. Колебания в инженерном деле. / С.П. Тимошенко. – М., 1967. – 444 с.

13. Zadler, B.J. Resonant ultrasound spectroscopy: theory and application / B.J. Zadler [et. al.] // International Journal of Geophysics. – 2004.– Vol. 156. – P. 154–169.

14. Ebina, K. Investigation of frequency characteristics in cutting of soft tissue using prototype ultrasonic knives / K. Ebina, H. Hasegawa, H. Kanai // Japanese Journal of Applied Physics. – 2007. – Vol. 46, №. 7B.– P. 4793–4800.

15. Yang, S.Q. Simulation of heating process in ultrasonic welding of plastics / S.Q. Yang [et al.]// Acta Metallurgica Sinica (English Letters). – 2000. – Vol. 13.– P. 80–83.

16. Lim, Y.-J. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation / Y.-J. Lim [et. al.] // Surgical Endoscopy. – 2009. – Vol. 23. – P. 1298–1307.

17. Samani, A. Elastic moduli of normal and pathological human breast tissues: an inversiontechnique-based investigation of 169 samples / A. Samani, J. Zubowits, D. Plewes // Physics in Medicine and Biology. – 2007. – Vol. 52.– P. 1565–1576.

18. O’Hagan, J.J. Measurement of the hyperelastic properties of 44 pathological ex vivo breast tissue samples / J.J. O’Hagan, A. Samani // Physics in Medicine and Biology. – 2009. – Vol. 54. – P. 2557–2569.

19. Soedel, W. Vibrations of shells and plates. 3rd Edition. / . W. Soedel. – N.Y.: Marcel Dekker, Inc. – 2004. – 553 p.

20. Hill, M.J. Effects of surface tension and intraluminal fluid on mechanics of small airways / M.J. Hill, T.A. Wilson, R.K. Lambert // Journal of Applied Physiology. – 1997. – Vol. 82.– P. 233–239.

21. Тимошенко, С.П. Теория упругости / С.П.Тимошенко, Дж. Гудьер. – М., 1975. – 576 с.


Review

For citations:


Minchenya V.T., Stepanenko D.A., Bobrovskaya A.I. MODELLING OF RING-SHAPED ULTRASONIC WAVEGUIDES FOR TESTING OF MECHANICAL PROPERTIES AND THERAPEUTIC TREATMENT OF BIOLOGICAL TISSUES. Devices and Methods of Measurements. 2011;(1):77-84. (In Russ.)

Views: 924


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2220-9506 (Print)
ISSN 2414-0473 (Online)