BROADBAND METHOD FOR GROUP VELOCITY DISPERSION MEASUREMENTS IN THE MID-INFRARED
Abstract
About the Authors
D. S. KlimentovNorway
Department of Physics
N. A. Tolstik
Norway
Department of Physics
V. V. Dvoyrin
Norway
Department of Physics
I. T. Sorokina
Norway
Department of Physics
References
1. Budni, P.A. High-power/high-brightness diodepumped 1.9-μm thulium and resonantly pumped 2.1-μm holmium lasers / P.A. Budni [et al.] // IEEE J. Sel. Top.Quantum Electron. – 6, 629 (2000).
2. Tsai, T.Y. Q-Switched 2-μm Lasers by use of a Cr2+:ZnSe Saturable Absorber / T.Y. Tsai, M. Birnbaum // Appl. Opt. – 40, 6633 (2001).
3. Mateos, X. Efficient 2-mm Continuous-Wave Laser Oscillation of Tm3+:KLu(WO4)2 / X. Mateos [et al.] // IEEE J. Quantum Electron – 42, 1008 (2006).
4. Cai, S. Room-temperature cw and pulsed operation of a diode-end-pumped Tm:YAP laser / S. Cai [et al.] // Appl. Phys. – B 90, 133 (2008).
5. Sharp, R. C. 190-fs passively modelocked thulium fiber laser with a low threshold / R. C. Sharp [et al.] // Opt. Lett. – 21, 881–883 (1996).
6. Engelbrecht, M. Ultrafast thulium-doped fiberoscillator with pulse energy of 4.3 nJ / M. Engelbrecht [et al.] // Opt. Lett. – 33, 690–692 (2008).
7. Haxsen, F. Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion / F. Haxsen // Opt. Express. – 18, 18981–18988, 2010.
8. Kivisto, S. 600-fs Mode-Locked Tm-Ho-doped Fiber Laser Synchronized to Optical Clock With Optically Driven Semiconductor Saturable Absorber / S. Kivisto, O. Okhotnikov // IEEE Phot. Tech. Lett. – 23, 477–479 (2011).
9. Knight, J. C. Photonic crystal fibres / J. C. Knight // Nature. – 424, 847–851 (2003).
10. Russell, P. St. J. Photonic crystal fibers / St. J. P. Russell // Science. – 299, 358–362 (2003).
11. Alfano, R. R. Emission in the region 4000 to 7000 A via four-photon coupling in glass /R. R. Alfano, S. L. Shapiro // Phys. Rev. Lett. – 24, 584–587 (1970).
12. Ranka, J. K. Visible continuum generation in airsilica microstructure optical fibers with anomalous dispersion at 800 nm / J. K. Ranka,
13. R. S. Windeler, A. J. Stentz // Opt. Lett. – 25, 25–27 (2000).
14. Cohen, Leonard G. Comparison of Single-Mode Fiber Dispersion Measurement Techniques / Leonard G. Cohen // Journal of lightwave technology. – 3, 958 – 966 (1985)
15. Costa, B. Phase Shift Technique for the Measurement of Chromatic Dispersion in Optical Fibers Using LED's / B. Costa [et al.] // IEEE Trans. Microwave Theory Tech. – 30, 1497 (1982).
16. Nguyen, T. N. Simultaneous measurement of anomalous group-velocity dispersion and nonlinear coefficient in optical fibers using solitoneffect compression / T. N. Nguyen // Opt. Commun. – 278, 60 (2007)
17. Abedin, K. S. Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation /K. S. Abedin [et al.] // Opt. Lett. – 25, 299 (2000).
18. Zong, L. Rapid and accurate chromatic dispersion measurement of fiber using asymmetric Sagnac interferometer / L. Zong [et al.] // Opt. Lett. – 36, 660–662 (2011).
19. Akhmetshin, U G. New single-mode fibres with the flat spectral dependence of the chromatic dispersion varying over the fibre length / U G Akhmetshin [et al.] // Quantum Electron – 33, 265–267 (2003).
Review
For citations:
Klimentov D.S., Tolstik N.A., Dvoyrin V.V., Sorokina I.T. BROADBAND METHOD FOR GROUP VELOCITY DISPERSION MEASUREMENTS IN THE MID-INFRARED. Devices and Methods of Measurements. 2011;(2):116-120.